تبلیغات
برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات. - کامپیوترکوانتومی و QUBIT

برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.

دایره المعارف تاسیسات برق (اطلاعات عمومی برق)

کامپیوترکوانتومی (2)
کامپیوتری که روی میز تحریر شما جا خوش کرده، برای کارکردن باید یک مشت صفر و یک را بفهمد و دستکاری کند. همه اطلاعات اعم از حروف و اعداد یا وضعیت مودم و موس شما با مجموعه ای از بیت های متشکل از صفرها و یک ها به کامپیوتر داده می شود. درکامپیوترهای معمولی قوانین فیزیک کلاسیک حاکم است،بیت های اطلاعات، خیلی ساده تعریف می شوند؛ سوئیچ های الکتریکی می توانند روشن یا خاموش باشند، اشیا می توانند اینجا باشند، می توانند هم نباشند! ولی کامپیوترهای کوانتومی با طبیعت دودویی های فیزیک کلاسیک محدود نمی شود ،كامپیوتر كوانتومی دستگاهی است كه یك پدیده ی فیزیكی را بر اساس قوانین فیزیک كوانتومی به صورت منحصر به فردی در می آورد تا به صورت اساسی یك حالت جدیداز پردازش اطلاعات را تشخیص دهد. در واقع روش بهتر و  قدرتمندتر برای پردازش اطلاعات پیش رویمان ،براساس فیزیک كوانتومی می باشد.دراین مطلب به بیان تاریخچه وتفاوت های کامپیوترهای کوانتومی وکلاسیک می پردازیم و نحوه برقراری ارتباط رادرکامپیوترهای کوانتومی شرح می دهیم.
 
 
(1)کامپیوتر کوانتومی

کامپیوتر تنها بخشی از دنیایی است که ما آنرا دنیای دیجیتالی می نامیم. پردازش ماشینی اطلاعات، در هر شکلی، بر مبنای دیجیتال و محاسبات کلاسیک انجام می شود. اما روش بهتر برای پردازش اطلاعات بر اساس مکانیک کوانتومی می باشد. این روش جدید با ویژگی هایی همراه است که آنرا از محاسبات کلاسیک بسیار متمایز می سازد. گرچه محاسبات دانشی است که اساس تولد آن در ریاضیات بود، اما کامپیوترها سیستم هایی فیزیکی هستند و فیزیک در آینده این دانش نقش تعیین کننده ای خواهد داشت. البته وجود تفاوت بین این دو به معنای حذف یکی و جایگزینی دیگری نیست. به قول «نیلز بور» گاهی ممکن است خلاف یک حقیقت انکار ناپذیر منجر به حقیقت انکار ناپذیر دیگری شود. بنابراین محاسبات کوانتومی را به عنوان یک زمینه و روش جدید و بسیار کارآمد مطرح می کنیم. وجود چند پدیده مهم که مختص فیزیک کوانتومی است، آن را از دنیای کلاسیک جدا می سازد. این پدیده ها عبارتند از: بر هم نهی(superposition) ، تداخلinterference) ، درهم تنیدگی(Entanglement) ، نا جایگزیدگی (non locality) و تکثیر ناپذیری (non clonability)  .

برای بررسی اثرات این پدیده ها در این روش جدید، لازم است که ابتدا واحد اطلاعات کوانتومی را معرفی کنیم.

(1)کامپیوتر کوانتومی

هر سیستم محاسباتی دارای یک پایه اطلاعاتی است که نماینده کوچکترین میزان اطلاعات قابل نمایش، چه پردازش شده و چه خام است. در محاسبات کلاسیک این واحد ساختاری را بیت می نامیم که گزیده ی واژه ی«عدد دودویی» است زیرا می تواند تنها یکی از دو رقم مجاز صفر و یک را در خود نگه دارد. به عبارت دیگر هر یک از ارقام یاد شده در محاسبات کلاسیک، کوچک ترین میزان اطلاعات قابل نمایش محسوب می­شوند. پس سیستم هایی هم که برای این مدل وجود دارند باید بتوانند به نوعی این مفهوم را عرضه کنند. در محاسبات کوانتومی هم  چنین پایه ای معرفی میشود که آنرا کیوبیت (qubit) یا بیت کوانتومی می نامیم.

یک بیت کوانتومی (که به آن "کیوبیت"اطلاق می گردد )ممکن است درحالت های کلاسیک صفر یا یک وجودداشته باشد،یا ترکیبی از این دو(یعنی درآن واحد،مقادیر صفرویک را به طورهمزمان داشته باشیم "حالت برهم نهی ") یا حتی معرف عددی باشند که حالت آنها را جایی بین صفر و یک تعیین می کند. با توجه به مکانیک کوانتومی، نمی توان دقیقاً وجود یا عدم وجود یک ذره ریز را مشخص کرد. می توان به وسیله آمار و احتمال، امکان وجود این ذره های ریز را در مکان و زمان مشخصی تعیین کرد، اما هیچ راهی برای دانستن قطعی این که آیا این ذره آنجا هست یا نه، تا وقتی که آن را مستقیماً ندیده ایم وجود ندارد. البته آنچه که در کامپیوترهای کوانتومی با ارزش است همین احتمالات است. .

 

تاریخچه کامپیوتر کوانتومی

 

(1)کامپیوتر کوانتومی

نظریه کامپیوترکوانتومی ازسال 1982مطرح بوده است از زمانی که فیزیک دان مشهور و برنده جایزه نوبل «ریچارد فاینمن » برای نخستین بار ، پیشنهاد كرد كه باید محاسبات از دنیای دیجیتال وارد دنیای جدیدی به نام كوانتوم شود،همچنین بیان کرد کامپیوتر کوانتومی چگونه ممکن است کار کند. این پیشنهاد تا اوایل سال1990مورد توجه جدی قرار نگرفت وبه صورت آکادمیک باقی ماند،البته در سال 1985،دویتش متوجه شد که اظهارات فاینمن ، می تواند تدریجاً به ساخت کامپیوتر کوانتومی منجر شودو مقاله ای را منتشر کرد مبنی بر اینکه اصولاً هر فرآیند فیزیکی را می توان به خوبی با کامپیوترهای کوانتومی مدل سازی کرد. بالاخره در 1994 « پیتر شور» نخستین گام را برای  محقق كردن این آرزو برداشت. وقتی که بعضی از مشکلات کلیدی کامپیوتر های معمولی نشان داده شد ، کامپیوترهای کوانتومی در اصل می توانستند خارج از رونوشت های کلاسیکی خود محاسبات را انجام و اجرا نمایند یعنی کارایی بسیار بالاتری را نسبت به کامپیوترهای معمولی از خود نشان می داد ند. وی مقاله ای را منتشر نمود که حاوی روشی برای استفاده از کامپیوترهای کوانتومی در حل مشکل پیچیده ای در نظریه اعداد،به نام فاکتورگیری بود.او نشان داد که چگونه یک مجموعه از عملیات ریاضی که منحصراً برای کامپیوترهای کوانتومی طراحی شده اند ، می توانند چنین دستگاهی را به انجام فاکتورگیری از اعداد بیشماری با سرعت بالاتر از کامپیوتر های کلاسیک ، قادر سازد با این اختراع ، محاسبات کوانتومی از یک کنجکاوی به یک توجه جهانی تبدیل شد.

از آن موقع به بعد، گروههای تحقیقاتی در سرتاسر دنیا مسابقه ای را برای پیش قدم شدن در ساخت یک سیستم عملی آغاز نمودند. به این ترتیب ارتباط نوینی بین نظریه ی اطلاعات و فیزیک كوانتومی شروع به شکل گیری کرد که امروزه انرا محاسبات کوانتومی یا محاسبات نانو متری  (Nano Computing ) می نامیم .محاسبات کوانتومی مشكلات گذشته را برطرف می سازدو افق جدیدی را ایجا دمی کند.

قدرت خارق العاده کامپیوتر کوانتومی در نتیجه وقوع پدیده ای موسوم به توازی کوانتومی، مکانیزمی که انجام و اجرای محاسبات حجیم ، زیاد و مکرر را به طور همزمان  مقدور می سازد. این یک مقابله سخت و نیرومند و فرق نمایان و بزرگ با کامپیوترهای کلاسیک است که قادرند تنها هر عملیات را فقط به صورت یک عمل در هر با ر و البته  خیلی سریع انجام دهند.

 

چه تفاوتی میان یک کامپیوتر کوانتومی ویک کامپیوترکلاسیک وجود دارد؟

 

بین كامپیوتر های كوانتومی و كامپیوتر های كلاسیك تفاوت های اساسی وجود دارد:

1- در کامپیوتر های كوانتومی  به جای استفاده از ترانزیستورها و مدارهای رایانه ای معمولی از اتم ها و سایر ذرات ریزمانند نانو ذرات نیمه رسانا((نقاط کوانتومی- Quantum dots)) برای پردازش اطلاعات استفاده می كنند.یك اتم می تواند به عنوان یك بیت حافظه در رایانه عمل كند و جا به جایی اطلاعات از یك محل به محل دیگر نیز توسط نور امكان می پذیرد. ذخیره اطلاعات در کامپیوترهانیز به صورت سری هایی از بیت های با حالت های روشن و خاموش صورت می گیرد.

2- در مقایسه این 2نوع کامپیوتر می توان گفت،مسائلی که زمانی تصور می شد درکامپیوترهای کلاسیک غیر قابل حل است،درکامپیوتر های کوانتومی حل خواهد شدو شبیه سازی های صورت گرفته به واقعیت نزدیک تر می شود.حتی ابر کامپیوترها هم در برابر آنها رقیبی محسوب نخواهند شد. به عنوان مثال ،به روز رسانی نرم افزار ،Email،بانک های آنلاین و تمام قلمرو رمز نگاری عمومی و امضاهای دیجیتال،فقط از دوروش رمز نگاری برای ایمن نگاه داشتن خود استفاده می کنند.

RSAوECC (رمزنگاری منحنی بیضی) دوروشی هستند که کشف رمز این روشها،برای کامپیوترهای کلاسیک تا حد زیادی ناشدنی است.ولی یک کامپیوتر کوانتومی به اندازه کافی برای شکستن هردوی این کدها،قدرتمند است.

(ECCبرای امضاهای دیجیتال استفاده می شود،که اطمینان میدهد یک پیغام واقعا توسط فرستنده مدعی،فرستاده شده است.RSAبرای بیشتر سیستمهای رمزنگاری کلید عمومی استفاده میشود،که در آن یک پیغام ،با یک کلید عمومی مجاز کدگذاری می شود و باید با قوانین ریاضی مبتنی بر کلید سرّی رمزگشایی شود. )

(1)کامپیوتر کوانتومی

3-کامپیوترهای کوانتومی از یک خاصیت دیگر هم سود می برند که آنها را از کامپیوترهای کلاسیک مستثنی می کند و آن انتقال از راه دور است.انتقال از راه دور موجب می شود، اطلاعات یک ذره به ذره دیگری منتقل شود.درنتیجه کامپیوترهای کوانتومی برای انتقال بیت در درون و بیرون ساختار خود ،نیازمند سیم نیستند.

4-تفاوت دیگر کامپیوترهای کوانتومی با کامپیوترهای کلاسیک این است که،اندازه ترانزیستورها هر سال کوچکتر میشود.وقتی اندازه ترانزیستورها به ابعاد اتمی نزدیک می شود،دیگر قوانین حاکم بر فیزیک کلاسیک بر رفتار اتم ها حاکم نیست.

به طور مثال کسی نمیداند یک الکترون در زمان مشخصی ،دقیقاً در کجا قرار دارد یا کسی نمیتواند به درستی تشخیص دهد که الکترون در یک سیم به کجا میرود. یعنی وقتی به ابعاد اتمی نزدیک می شویم،فیزیک کوانتومی رفتار اتم ها را توضیح میدهد و دیگر قوانین فیزیک کلاسیک کاربرد ندارد.در واقع این نوع  کامپیوترها با استفاده از فناوری های میکروسکوپی ذره ها کار می کنند.

5-همان طورکه می دانیم دریک کامپیوتر کوانتومی نسبت به کامپیوترهای کلاسیک ،اصول حاکم تغییر نموده اند.نه تنها،یک بیت کوانتومی، موسوم به کیوبیت می توانددرحالت های صفرویک کلاسیک وجودداشته باشد بلکه همچنین می تواننددرحالت برهم نهی قرارداشته باشد.هرگاه هر کیوبیت دریک کامپیوترکوانتومی درحالت برهم نهی واقع شده باشد ،آنگاه کامپیوتررامی توان درهرحالت ممکنی مجسم کرد که آن کیوبیت هامی توانندازخودنشان دهند.درواقع کامپیوتر های کوانتومی می تواند در یک زمان چندین حالت داشته باشد و این امکان راایجادمی کند که میلیون ها بار سریع تر و قدرتمند تر از ابرکامپیوتر های فعلی کار کند. چند حالت پذیری کیوبیت ها همان دلیلی است که باعث می شود کامپیوتر های کوانتومی ذاتاً از پردازش موازی بهره ببرند. پردازش موازی امکان کار کردن بر روی میلیون ها محاسبه در یک لحظه را به این کامپیوتر ها می دهد در حالی که کامپیوتر شخصی شما فقط یک محاسبه در لحظه انجام می دهد.

 

 

نحوه برقراری ارتباط درکامپیوترهای کوانتومی

با توجه به ماهیت ساختار کامپیوترهای کوانتومی،روش برقراری ارتباط آنها کاملاً متفاوت با کامپیوترهای امروزی است. بدین صورت که پالس های رادیویی نقش صفحه کلید را دارند،که به وسیله آن اطلاعات وارد کامپیوتر می شود و دستگاه تشدید مغناطیسی که شبیه به دستگاه MRI بیمارستان است،نقش صفحه نمایش را ایفا می کند و با ارائه تصویر مغناطیسی از توده مولکولها ، کامپیوتر توده محاسبات را به ما میدهد.

 

(1)کامپیوتر کوانتومی

از سوی دیگر باید تلاش کرد ترانزیستورهایی از جنس مورد نظر ساخت،زیرا ترانزیستورها،عامل تقویت ولتاژ در مدارهای الکترونیکی هستند و قدرت تقویت کنندگی آنها موجب افزایش سرعت کامپیوتر ها است.

این ترانزیستورها تاثیر مهمی در تولید کامپیوترهای آینده دارند و در صورتی که در ابتدا یا انتهای  ساختار آنها،ترکیبی با دیگر نیمه هادی ها به خصوص طلا ایجاد شود یا حتی روی پوسته آنها نیمه هادی مهمی چون «روی» قرار داده شود،گام مهمی برای تولید قدرتمندترین ترانزیستورها برداشته ایم.

در واقع زمانی که این نیمه هادی های ترکیب شده،به یک باطری متصل می شوند و الکتریسیته دریافت می کنند،همچون یک ترانزیستور عمل کرده و موجب تقویت ولتاژ در مدار و همچنین موجب افزایش سرعت کامپیوتر می شوند.از آنجایی که جریان ورودی به این نیمه هادی ها قابل کنترل است،جریان خروجی از آنها هم قابل کنترل است. این ترکیب ها این قابلیت را دارند که در ساخت نقاط کوانتومی مورد استفاده در کامپیوترهای نسل آینده استفاده شوند.

این نقاط کوانتومی در واقع کریستال هایی از نوع نیمه هادی هستند،که قابلیت ذخیره کردن الکترون ها در آنها فوق العاده بالاست.این نقاط کوانتومی بهترین مکان برای ذخیره سازی اطلاعات در کامپیوترهای پیشرفته هستند. از سوی دیگر در صورتی که بتوان نقاط کوانتومی را با یکدیگر پیوند داد، می توان آنها را به اندازه تنها چند سانتی متر مربع در ساختار سخت افزاری کامپیوترها جای داد.به این ترتیب هر سانتی متر مربع از درایورهای ما می توانند صدها گیگا بایت از اطلاعات را در خود ذخیره کنند.

 

تا چند سال دیگر، کامپیوترهای كوانتومی از داخل آزمایشگاه های تحقیقاتی دانشمندان علوم رایانه، فیزیك و ریاضی دانان بیرون خواهند آمد و به صورت كاربردی و عملی مورد استفاده قرار خواهند گرفت. آن دسته از مسائل كه با محاسبات پیچیده ی خود، کامپیوترهای جبری امروز را به ستوه می آورند، توسط کامپیوترهای كوانتومی به آسانی حل خواهد شد. در  قسمت اول به مروری مختصر بر تاریخچه ی کامپیوترهای كوانتومی وتفا وتشان با کامپیوترهای کلاسیک و نحوه برقراری ارتباط درکامپیوترهای کوانتومی پرداختیم .دراین قسمت به بیان محاسبات کوانتومی وکیوبیت ها می پردازیم.

 

 

 

 

کامپیوترکوانتومی (2)

 

محاسبات کوانتومی

هدف محاسبات كوانتومی یافتن روش هایی برای طراحی مجدد ادوات شناخته شده ی محاسبات ( مانند گیت ها و ترانزیستورها) به گونه ای است كه بتوانند تحت اثرات كوانتومی ، كه در محدوده ی ابعاد نانومتری و كوچكتر بروز می كنند كار كنند. ورود به دنیای محاسبات كوانتومی نیازمند دو پیش زمینه مهم است،نخست باید اصول اساسی و برخی تعابیر مهم مكانیك كوانتومی را به طور دقیق بررسی كرد سپس مفهوم اطلاعات در فیزیك نیز، چه به صورت كلاسیك و چه در معنای  جدیدكوانتومی آن باید درك شود .بنابراین محاسبات كوانتومی را به عنوان یك زمینه و روش جدید و بسیار كارآمد مطرح می كنند. هر سیستم محاسباتی  دارای یك پایه اطلاعاتی است كه نماینده ی كوچكترین میزان اطلاعات  قابل نمایش ، چه پردازش شده و چه خام است.

 

همان طورکه درقسمت قبل  نیزگفتیم در محاسبات كلاسیك ، این واحد ساختاری را بیت می نامیم كه گزیده واژه « عدد دو دویی  » است زیرا می تواند تنها یكی از دو رقم مجاز صفر و یك را در خود نگه دارد به عبارت دیگر هر یك از ارقام یاد شده در محاسبات كلاسیك، كوچكترین میزان اطلاعات قابل نمایش محسوب می شوند. پس سیستم هایی هم كه برای این مدل وجود دارند باید بتوانند به نوعی این مفهوم را عرضه كنند.ودر محاسبات كوانتومی هم چنین پایه ای معرفی می شود ،كه آنرا ( QUBIT ) یا بیت كوانتومی می نامیم.اما این تعریف كیوبیت نیست و باید آنرا همراه با مفهوم و نمونه های واقعی و فیزیكی درك كرد. در ضمن فراموش نمی كنیم كه كیوبیت ها سیستم هایی فیزیكی هستند، نه مفاهیمی انتزاعی و اگر از ریاضیات هم برای توصیف آنها كمك می گیریم تنها بدلیل ماهیت كوانتومی آنها است.

کامپیوترکوانتومی (2)

در فیزیك كلاسیك برای نگه داری یك بیت از حالت یك سیستم فیزیكی استفاده می شود. در سیستم های كلاسیكی اولیه ( كامپیوترهای مكانیكی ) از موقعیت مكانی دندانه های چند چرخ دنده برای نمایش اطلاعات استفاده می شد. از زمانیكه حساب دودویی برای محاسبات پیشنهاد شد، سیستم های دو حالتی انتخابهای ممكن برای محاسبات عملی شدند. به این معنی كه تنها كافی بود تا سیستمی دو حالت یا دو پیكربندی مشخص، متمایز و بدون تغییر داشته باشد تا بتوان از آن برای این منظور استفاده كرد. به همین جهت، از بین تمام كاندیداها، سیستم های الكتریكی و الكترونیكی برای این كار انتخاب شدند. به این شكل، هر بیت، یك مدار الكتریكی است كه یا در آن جریان وجود دارد یا ندارد.

هر بیت كوانتومی یا كیوبیت عبارتست از یك سیستم دو دویی  كه می تواند دو حالت مجزا داشته باشد. به عبارت فنی تر ، كیو بیت یك سیستم دو بعدی كوانتومی با دو پایه به شكل < 0| و <1| است . البته نمایش پایه ها یكتا نیست، به این دلیل كه بر خلاف محاسبات كلاسیك در محاسبات كوانتومی از چند سیستم كوانتومی به جای یك سیستم ارجح استفاده می كنیم.

انتخاب ایده ال برای نمایش كیوبیت استفاده از مفهوم اسپین است كه معمولا اتم هیدروژن برای آن به كار می رود،چون دریک اتم هیدروژن هم پروتون وهم الکترون ،دارای اسپین می باشد. در اندازه گیری اسپین یك  الكترون ، احتمال بدست آمدن دو نتیجه وجود دارد: یا اسپین رو به بالاست كه آنرا با  کامپیوترکوانتومی (2) نشان می  دهند و معادل <0| است و یا رو پایین است كه آن را با  کامپیوترکوانتومی (2) نشان می دهیم و معادل با <1| است .بالا یا پایین بودن جهت اسپین در یك اندازه گیری از آنجا ناشی می شود كه اگر اسپین اندازه گیری شده در جهت محوری باشد كه اندازه گیری را در جهت آن انجام داده ایم، آنرا بالا و اگر در خلاف جهت این محور باشد آنرا پائین می نامیم. شاید بتوان گفت مهم ترین تفاوت بیت و كیوبیت در این دانست كه بیت كلاسیك فقط می تواند در یكی از دو حالت ممكن خود قرار داشته باشد در حالیكه بیت كوانتومی می تواند به طور بالقوه در بیش از دو حالت وجود داشته باشد. تفاوت دیگر در اینجاست كه هرگاه بخواهیم می توانیم مقدار یك بیت را تعیین كنیم اما اینكار را در مورد یك كیوبیت نمی توان انجام داد.

به زبان كوانتومی یك كیوبیت را با عبارت   کامپیوترکوانتومی (2) نشان می  دهیم . حاصل اندازه گیری روی یك كیوبیت حالت |0 > را با احتمال کامپیوترکوانتومی (2) و حالت |1 > را با احتمال  کامپیوترکوانتومی (2) بدست می اورند.

کامپیوترکوانتومی (2)

البته اندازه گیر ی یك كیوبیت حتما یكی از دو نتیجه ممكن را بدست می دهد. از سوی دیگر اندازه گیری روی سیستم های كوانتومی حالت اصلی آنها را تغییر می دهد. كیوبیت در حالت كلی در یك حالت برهم نهاده از دو پایه ممكن قرار دارد.

اما در اثر اندازه گیری حتما به یكی از پایه ها برگشت می كند.به این  ترتیب هر كیوبیت ، بیش از اندازه گیری شدن می تواند اطلاعات ز یادی را در خود داشته باشد.بر اساس اصل برهم نهیsuperposition))، هر سیستم كوانتومی كه بیش از یك حالت قابل دسترس دارد، می تواند به طور همزمان در یك تركیب خاص از آن حالت ها هم قرار داشته باشد. در اصطلاح می گوئیم كه سیستم كوانتومی علاوه بر حالت های ناب یك یا چند حالت آمیخته یا بر هم نهیده (blend or superposed) نیز دارد. پس اگر یك ساختار حافظه ای n كیوبیتی داشته باشیم، طبق این اصل، این تعداد می توانند در  2n پیكربندی متمایز وجود داشته باشند. به این ترتیب یك كامپیوتر كوانتومی این امكان را  می یابد كه مانند یك كامپیوتر موازی كلاسیك بسیار پر قدرت عمل كند كه در یك لحظه روی چندین مسیر اطلاعاتی پردازش می كند. البته مشاهده و متمایز كردن تك تك این محاسبه گرهای كوانتومی غیر ممكن است. چون كامپیوتر كوانتومی با تعداد بسیار زیادی مسیر محاسباتی كار می كند، می توان كاری كرد كه این محاسبات با هم تداخل یا بر هم تاثیر هم داشته باشند. به عبارتی، محاسباتی كه به طور موازی با هم انجام می شوند طبق اصل تداخل می توانند اثر هم را تقویت یا تضعیف كنند. در نتیجه محاسبه ای شبكه ای بوجود می آید كه نوعی خاصیت جمعی از تمام محاسبات را نشان می دهد. خاصیت بسیار شگفت انگیز در مكانیك كوانتومی خاصیت در هم تافتگی است. اگر دو یا چند كیوبیت را در بر هم كنش با هم قرار دهیم، می توانند برای مدتی در یك حالت كوانتومی مشترك قرار بگیرندبه طوریکه نتوان آن حالت را به شكل حاصلضربی از

حالت های جدا ازهم اولیه نشان داد.حالت این واحدهای اطلاعاتی راگنگ یا نادقیق (fuzzy)می نامیم.

یک نتیجه مهمentanglement(درهم تافتگی)این است که یک جفت کیوبیت درهم پیچیده روی یکدیگر تاثیرهمزمانی را می گذارند که به فاصله آن ها ازیکدیگر وماده ای که این فاصله را پرمی کند بستگی ندارد.

یك جفت در هم تافته با هم مخلوط نمی شوند بلكه تنها به طور كوانتومی با هم بر هم كنش می كنند. علاوه بر اسپین از وضع قطبش یك پرتو فوتونی و نیز سطوح انرژی مجزای یك اتم دلخواه نیز می توان به عنوان سیستم كیوبیتی استفاده كرد.درزیر به طورکامل کیوبیت ها را شرح می دهیم.

 

کیوبیت ها

 

کامپیوترکوانتومی (2)

بیت‌های كوانتومی یا كیوبیت‌ها معادل كوانتومی ترانزیستورهایی‌اند كه كامپیوترهای امروزی را تشكیل داده‌اند. وجه مشترك تمام كیوبیت‌ها آن است كه می‌توانند از وضعیتی به وضعیت دیگر سوئیچ شوند. به طوری كه از این وضعیت‌ها بتوان برای نشان دادن دوتایی (صفرویک )اطلاعات استفاده نمود. كیوبیت‌ها دارای یكی از چهار نوع ذرة كوانتومی فوتون، الكترون، اتم و یون می‌باشند. فوتون‌ها با یكدیگر برهم‌كنش خوبی ندارند، اما می‌توانند به آسانی از نقطه‌ای به نقطه دیگر جابه‌جا شوند و این خاصیت آنها را به گزینه‌ای مناسب جهت انتقال اطلاعات كوانتومی تبدیل می‌كند و به عكس الكترون‌ها، اتم‌ها و یون‌ها به آسانی با هم برهم‌كنش دارند، اما جابه‌جایی خوبی ندارند و به همین دلیل برای پردازش و ذخیرة اطلاعات كوانتومی بسیار مناسب می‌باشند.

 

فوتون‌ها

میدان الكتریكیِ فوتون‌های غیر قطبی، در صفحه‌ای عمود بر جهت حركت فوتون به ارتعاش درمی‌آید. اما میدان‌های الكتریكی فوتون‌های قطبی، تنها در یكی از چهار جهت داخل صفحه (عمودی، افقی و در جهت دیاگونال) مرتعش می‌شود و این دو جفت قطبش به ترتیب نشان‌دهنده وضعیت‌های صفر و یك هستند.

 

فوتون‌ها را می‌توان با آینه و فیلترهای قطبی‌كننده كنترل نمود. این فیلترها تمام فوتون‌ها به غیر از فوتون‌های با یك جهت قطبش معین را در خود نگه می‌دارند. همچنین می‌توان از چرخه موج یا فاز فوتون‌ها و نیز زمان رسیدن آنها، به جای كیوبیت استفاده نمود.

 

الكترون‌ها

الكترون‌ها دارای دو جهت اسپین بالا و پایین، همانند دوقطب یك آهنربا، می‌باشند و می‌توان با استفاده از میدان‌های الكتریكی مغناطیسی یا نوری، آنها را در یكی از این دو وضعیت قرار داد. همچنین می‌توان از موقعیت الكترون در یك نقطه كوانتومی برای نمایش یك عدد دوتایی (صفر یا یك) استفاده نمود.

 

اتم‌ها و یون‌ها

اتم‌ها و یون‌ها از الكترون‌ها پیچیده‌تر می‌باشد و به روش‌های متعددی می‌توان از آنها برای نمایش اطلاعات استفاده كرد. یون‌ها؛ در واقع؛ اتم‌های بارداری هستند كه بار آنها ناشی از دریافت کردن و یا از دست دادن الكترون می‌باشد.

 

اتم‌ها نیز همانند الكترون‌ها دارای جهت اسپینی هستند كه می‌توان از آن برای نمایش یك رقم دوتایی در یك كیوبیت استفاده نمود. همچنین از موقعیت الكترون لایه خارجی اتم- در سطح انرژی پایین‌تر یا بالاتر- هم می‌توان برای نمایش صفر و یك‌ها استفاده نمود. همچنین اتم‌هایی كه به دام انداخته شده و ثابت می‌شوند دارای ارتعاشات كوانتومی گسسته‌ای خواهند بود كه از آن نیز می‌توان در كیوبیت‌ها استفاده نمود.

نوع چهارم كیوبیت‌های‌ اتمی، مبتنی بر سطوح فوق ظریف یا ارتعاشات بسیار ریز سطوح اربیتال‌های الكترونی است كه حاصل برهم‌كنش‌های مغناطیسی بین هسته و الكترون است.

کامپیوترکوانتومی (2)

كیوبیت‌ها از ذرات كنترل شده‌ای تشكیل شده‌اند و در واقع ابزارهای به دام اندازی دارند.

این كیوبیت‌ها چهار نوع می‌باشند::

دام‌های یونی، نقاط كوانتومی، ناخالصی‌های نیمه‌رسانا و مدارهای ابررسانا.

 

دام‌های یونی

دام‌های یونی برای نگهداشتن هر كدام از یون‌ها از میدان‌های مغناطیسی و یا نوری استفاده می‌كنند. محققان تاكنون توانسته‌اند شش یون را دریك تك دام یونی نگه دارند. فناوری دام یونی به خوبی جا افتاده و احتمال دارد كه بتوان با استفاده از آن در سطح انبوه به تولید كیوبیت‌ها پرداخت. به دلیل باردار بودن یون‌ها، آنها در برابر نویز زیست محیطی آسیب‌پذیری بیشتری نسبت به اتم‌های خنثا دارند.

نقاط كوانتومی

 

 

کامپیوترکوانتومی (2)

نقاط كوانتومی در واقع بیت‌هایی از مواد نیمه‌رسانا شامل یك یا چند الكترون است. این نقاط كوانتومی را می‌توان با الكترون‌های منفرد بارگذاری نمود و به آسانی آنها را در ابزارها و تجهیزات الكترونیكی جای داد در عین حال نمونه‌های اولیه نقاط كوانتومی تنها در دماهای فوق‌العاده پایین كار می‌كنند.


کامپیوتر کوانتومی

کامپیوتری که روی میز تحریر شما جا خوش کرده، برای کارکردن باید یک مشت صفر و یک را بفهمد و دستکاری کند. همه اطلاعات اعم از حروف و اعداد یا وضعیت مودم و موس شما با مجموعه ای از بیت های متشکل از صفرها و یک ها به کامپیوتر داده می شود. درکامپیوترهای معمولی قوانین فیزیک کلاسیک حاکم است،بیت های اطلاعات، خیلی ساده تعریف می شوند؛ سوئیچ های الکتریکی می توانند روشن یا خاموش باشند، اشیا می توانند اینجا باشند، می توانند هم نباشند! ولی کامپیوترهای کوانتومی با طبیعت دودویی های فیزیک کلاسیک محدود نمی شود ،كامپیوتر كوانتومی دستگاهی است كه یك پدیده ی فیزیكی را بر اساس قوانین فیزیک كوانتومی به صورت منحصر به فردی در می آورد تا به صورت اساسی یك حالت جدیداز پردازش اطلاعات را تشخیص دهد. در واقع روش بهتر و  قدرتمندتر برای پردازش اطلاعات پیش رویمان ،براساس فیزیک كوانتومی می باشد.دراین مطلب به بیان تاریخچه وتفاوت های کامپیوترهای کوانتومی وکلاسیک می پردازیم و نحوه برقراری ارتباط رادرکامپیوترهای کوانتومی شرح می دهیم.

کامپیوتر تنها بخشی از دنیایی است که ما آنرا دنیای دیجیتالی می نامیم. پردازش ماشینی اطلاعات، در هر شکلی، بر مبنای دیجیتال و محاسبات کلاسیک انجام می شود. اما روش بهتر برای پردازش اطلاعات بر اساس مکانیک کوانتومی می باشد. این روش جدید با ویژگی هایی همراه است که آنرا از محاسبات کلاسیک بسیار متمایز می سازد. گرچه محاسبات دانشی است که اساس تولد آن در ریاضیات بود، اما کامپیوترها سیستم هایی فیزیکی هستند و فیزیک در آینده این دانش نقش تعیین کننده ای خواهد داشت. البته وجود تفاوت بین این دو به معنای حذف یکی و جایگزینی دیگری نیست. به قول «نیلز بور» گاهی ممکن است خلاف یک حقیقت انکار ناپذیر منجر به حقیقت انکار ناپذیر دیگری شود. بنابراین محاسبات کوانتومی را به عنوان یک زمینه و روش جدید و بسیار کارآمد مطرح می کنیم. وجود چند پدیده مهم که مختص فیزیک کوانتومی است، آن را از دنیای کلاسیک جدا می سازد. این پدیده ها عبارتند از: بر هم نهی(superposition) ، تداخلinterference) ، درهم تنیدگی(Entanglement) ، نا جایگزیدگی (non locality) و تکثیر ناپذیری (non clonability)  .

برای بررسی اثرات این پدیده ها در این روش جدید، لازم است که ابتدا واحد اطلاعات کوانتومی را معرفی کنیم.

هر سیستم محاسباتی دارای یک پایه اطلاعاتی است که نماینده کوچکترین میزان اطلاعات قابل نمایش، چه پردازش شده و چه خام است. در محاسبات کلاسیک این واحد ساختاری را بیت می نامیم که گزیده ی واژه ی«عدد دودویی» است زیرا می تواند تنها یکی از دو رقم مجاز صفر و یک را در خود نگه دارد. به عبارت دیگر هر یک از ارقام یاد شده در محاسبات کلاسیک، کوچک ترین میزان اطلاعات قابل نمایش محسوب می­شوند. پس سیستم هایی هم که برای این مدل وجود دارند باید بتوانند به نوعی این مفهوم را عرضه کنند. در محاسبات کوانتومی هم  چنین پایه ای معرفی میشود که آنرا کیوبیت (qubit) یا بیت کوانتومی می نامیم.

یک بیت کوانتومی (که به آن “کیوبیت”اطلاق می گردد )ممکن است درحالت های کلاسیک صفر یا یک وجودداشته باشد،یا ترکیبی از این دو(یعنی درآن واحد،مقادیر صفرویک را به طورهمزمان داشته باشیم “حالت برهم نهی “) یا حتی معرف عددی باشند که حالت آنها را جایی بین صفر و یک تعیین می کند. با توجه به مکانیک کوانتومی، نمی توان دقیقاً وجود یا عدم وجود یک ذره ریز را مشخص کرد. می توان به وسیله آمار و احتمال، امکان وجود این ذره های ریز را در مکان و زمان مشخصی تعیین کرد، اما هیچ راهی برای دانستن قطعی این که آیا این ذره آنجا هست یا نه، تا وقتی که آن را مستقیماً ندیده ایم وجود ندارد. البته آنچه که در کامپیوترهای کوانتومی با ارزش است همین احتمالات است. .

کامپیوتر کوانتومی

تاریخچه کامپیوتر کوانتومی

 

نظریه کامپیوترکوانتومی ازسال 1982مطرح بوده است از زمانی که فیزیک دان مشهور و برنده جایزه نوبل «ریچارد فاینمن » برای نخستین بار ، پیشنهاد كرد كه باید محاسبات از دنیای دیجیتال وارد دنیای جدیدی به نام كوانتوم شود،همچنین بیان کرد کامپیوتر کوانتومی چگونه ممکن است کار کند. این پیشنهاد تا اوایل سال1990مورد توجه جدی قرار نگرفت وبه صورت آکادمیک باقی ماند،البته در سال 1985،دویتش متوجه شد که اظهارات فاینمن ، می تواند تدریجاً به ساخت کامپیوتر کوانتومی منجر شودو مقاله ای را منتشر کرد مبنی بر اینکه اصولاً هر فرآیند فیزیکی را می توان به خوبی با کامپیوترهای کوانتومی مدل سازی کرد. بالاخره در 1994 « پیتر شور» نخستین گام را برای  محقق كردن این آرزو برداشت. وقتی که بعضی از مشکلات کلیدی کامپیوتر های معمولی نشان داده شد ، کامپیوترهای کوانتومی در اصل می توانستند خارج از رونوشت های کلاسیکی خود محاسبات را انجام و اجرا نمایند یعنی کارایی بسیار بالاتری را نسبت به کامپیوترهای معمولی از خود نشان می داد ند. وی مقاله ای را منتشر نمود که حاوی روشی برای استفاده از کامپیوترهای کوانتومی در حل مشکل پیچیده ای در نظریه اعداد،به نام فاکتورگیری بود.او نشان داد که چگونه یک مجموعه از عملیات ریاضی که منحصراً برای کامپیوترهای کوانتومی طراحی شده اند ، می توانند چنین دستگاهی را به انجام فاکتورگیری از اعداد بیشماری با سرعت بالاتر از کامپیوتر های کلاسیک ، قادر سازد با این اختراع ، محاسبات کوانتومی از یک کنجکاوی به یک توجه جهانی تبدیل شد.

از آن موقع به بعد، گروههای تحقیقاتی در سرتاسر دنیا مسابقه ای را برای پیش قدم شدن در ساخت یک سیستم عملی آغاز نمودند. به این ترتیب ارتباط نوینی بین نظریه ی اطلاعات و فیزیک كوانتومی شروع به شکل گیری کرد که امروزه انرا محاسبات کوانتومی یا محاسبات نانو متری  (Nano Computing ) می نامیم .محاسبات کوانتومی مشكلات گذشته را برطرف می سازدو افق جدیدی را ایجا دمی کند.

قدرت خارق العاده کامپیوتر کوانتومی در نتیجه وقوع پدیده ای موسوم به توازی کوانتومی، مکانیزمی که انجام و اجرای محاسبات حجیم ، زیاد و مکرر را به طور همزمان  مقدور می سازد. این یک مقابله سخت و نیرومند و فرق نمایان و بزرگ با کامپیوترهای کلاسیک است که قادرند تنها هر عملیات را فقط به صورت یک عمل در هر با ر و البته  خیلی سریع انجام دهند.

چه تفاوتی میان یک کامپیوتر کوانتومی و یک کامپیوترکلاسیک وجود دارد؟

 

بین كامپیوتر های كوانتومی و كامپیوتر های كلاسیك تفاوت های اساسی وجود دارد:

1- در کامپیوتر های كوانتومی  به جای استفاده از ترانزیستورها و مدارهای رایانه ای معمولی از اتم ها و سایر ذرات ریزمانند نانو ذرات نیمه رسانا((نقاط کوانتومی- Quantum dots)) برای پردازش اطلاعات استفاده می كنند.یك اتم می تواند به عنوان یك بیت حافظه در رایانه عمل كند و جا به جایی اطلاعات از یك محل به محل دیگر نیز توسط نور امكان می پذیرد. ذخیره اطلاعات در کامپیوترهانیز به صورت سری هایی از بیت های با حالت های روشن و خاموش صورت می گیرد.

2- در مقایسه این 2نوع کامپیوتر می توان گفت،مسائلی که زمانی تصور می شد درکامپیوترهای کلاسیک غیر قابل حل است،درکامپیوتر های کوانتومی حل خواهد شدو شبیه سازی های صورت گرفته به واقعیت نزدیک تر می شود.حتی ابر کامپیوترها هم در برابر آنها رقیبی محسوب نخواهند شد. به عنوان مثال ،به روز رسانی نرم افزار ،Email،بانک های آنلاین و تمام قلمرو رمز نگاری عمومی و امضاهای دیجیتال،فقط از دوروش رمز نگاری برای ایمن نگاه داشتن خود استفاده می کنند.

RSAوECC (رمزنگاری منحنی بیضی) دوروشی هستند که کشف رمز این روشها،برای کامپیوترهای کلاسیک تا حد زیادی ناشدنی است.ولی یک کامپیوتر کوانتومی به اندازه کافی برای شکستن هردوی این کدها،قدرتمند است.

(ECCبرای امضاهای دیجیتال استفاده می شود،که اطمینان میدهد یک پیغام واقعا توسط فرستنده مدعی،فرستاده شده است.RSAبرای بیشتر سیستمهای رمزنگاری کلید عمومی استفاده میشود،که در آن یک پیغام ،با یک کلید عمومی مجاز کدگذاری می شود و باید با قوانین ریاضی مبتنی بر کلید سرّی رمزگشایی شود. )

3-کامپیوترهای کوانتومی از یک خاصیت دیگر هم سود می برند که آنها را از کامپیوترهای کلاسیک مستثنی می کند و آن انتقال از راه دور است.انتقال از راه دور موجب می شود، اطلاعات یک ذره به ذره دیگری منتقل شود.درنتیجه کامپیوترهای کوانتومی برای انتقال بیت در درون و بیرون ساختار خود ،نیازمند سیم نیستند.

4-تفاوت دیگر کامپیوترهای کوانتومی با کامپیوترهای کلاسیک این است که،اندازه ترانزیستورها هر سال کوچکتر میشود.وقتی اندازه ترانزیستورها به ابعاد اتمی نزدیک می شود،دیگر قوانین حاکم بر فیزیک کلاسیک بر رفتار اتم ها حاکم نیست.

به طور مثال کسی نمیداند یک الکترون در زمان مشخصی ،دقیقاً در کجا قرار دارد یا کسی نمیتواند به درستی تشخیص دهد که الکترون در یک سیم به کجا میرود. یعنی وقتی به ابعاد اتمی نزدیک می شویم،فیزیک کوانتومی رفتار اتم ها را توضیح میدهد و دیگر قوانین فیزیک کلاسیک کاربرد ندارد.در واقع این نوع  کامپیوترها با استفاده از فناوری های میکروسکوپی ذره ها کار می کنند.

5-همان طورکه می دانیم دریک کامپیوتر کوانتومی نسبت به کامپیوترهای کلاسیک ،اصول حاکم تغییر نموده اند.نه تنها،یک بیت کوانتومی، موسوم به کیوبیت می توانددرحالت های صفرویک کلاسیک وجودداشته باشد بلکه همچنین می تواننددرحالت برهم نهی قرارداشته باشد.هرگاه هر کیوبیت دریک کامپیوترکوانتومی درحالت برهم نهی واقع شده باشد ،آنگاه کامپیوتررامی توان درهرحالت ممکنی مجسم کرد که آن کیوبیت هامی توانندازخودنشان دهند.درواقع کامپیوتر های کوانتومی می تواند در یک زمان چندین حالت داشته باشد و این امکان راایجادمی کند که میلیون ها بار سریع تر و قدرتمند تر از ابرکامپیوتر های فعلی کار کند. چند حالت پذیری کیوبیت ها همان دلیلی است که باعث می شود کامپیوتر های کوانتومی ذاتاً از پردازش موازی بهره ببرند. پردازش موازی امکان کار کردن بر روی میلیون ها محاسبه در یک لحظه را به این کامپیوتر ها می دهد در حالی که کامپیوتر شخصی شما فقط یک محاسبه در لحظه انجام می دهد.

نحوه برقراری ارتباط درکامپیوترهای کوانتومی

با توجه به ماهیت ساختار کامپیوترهای کوانتومی،روش برقراری ارتباط آنها کاملاً متفاوت با کامپیوترهای امروزی است. بدین صورت که پالس های رادیویی نقش صفحه کلید را دارند،که به وسیله آن اطلاعات وارد کامپیوتر می شود و دستگاه تشدید مغناطیسی که شبیه به دستگاه MRI بیمارستان است،نقش صفحه نمایش را ایفا می کند و با ارائه تصویر مغناطیسی از توده مولکولها ، کامپیوتر توده محاسبات را به ما میدهد.

از سوی دیگر باید تلاش کرد ترانزیستورهایی از جنس مورد نظر ساخت،زیرا ترانزیستورها،عامل تقویت ولتاژ در مدارهای الکترونیکی هستند و قدرت تقویت کنندگی آنها موجب افزایش سرعت کامپیوتر ها است.

این ترانزیستورها تاثیر مهمی در تولید کامپیوترهای آینده دارند و در صورتی که در ابتدا یا انتهای  ساختار آنها،ترکیبی با دیگر نیمه هادی ها به خصوص طلا ایجاد شود یا حتی روی پوسته آنها نیمه هادی مهمی چون «روی» قرار داده شود،گام مهمی برای تولید قدرتمندترین ترانزیستورها برداشته ایم.

در واقع زمانی که این نیمه هادی های ترکیب شده،به یک باطری متصل می شوند و الکتریسیته دریافت می کنند،همچون یک ترانزیستور عمل کرده و موجب تقویت ولتاژ در مدار و همچنین موجب افزایش سرعت کامپیوتر می شوند.از آنجایی که جریان ورودی به این نیمه هادی ها قابل کنترل است،جریان خروجی از آنها هم قابل کنترل است. این ترکیب ها این قابلیت را دارند که در ساخت نقاط کوانتومی مورد استفاده در کامپیوترهای نسل آینده استفاده شوند.

این نقاط کوانتومی در واقع کریستال هایی از نوع نیمه هادی هستند،که قابلیت ذخیره کردن الکترون ها در آنها فوق العاده بالاست.این نقاط کوانتومی بهترین مکان برای ذخیره سازی اطلاعات در کامپیوترهای پیشرفته هستند. از سوی دیگر در صورتی که بتوان نقاط کوانتومی را با یکدیگر پیوند داد، می توان آنها را به اندازه تنها چند سانتی متر مربع در ساختار سخت افزاری کامپیوترها جای داد.به این ترتیب هر سانتی متر مربع از درایورهای ما می توانند صدها گیگا بایت از اطلاعات را در خود ذخیره کنند.

منبع : تبیان



کوچکترین کامپیوتر رومیزی دنیا از یک سیب هم کوچکتر است......


 یک کامیپوتر در اندازه سیب!

کوچکترین کامپیوتر رومیزی دنیا که مکعبی به ابعاد تقریبی پنج سانتی‌متر است از لینوکس قدرت میگیرد. ‏

مشخصات این کامپیوتر جذاب عبارت هستند از یک پردازنده ۳۰۰ مگاهرتزی اتم، ۶۴ مگابایت اس.دی. رم، خروجی مونیتور با وضوح ۱۰۲۴ * ۱۲۸۰ پیکسل، درگاه فلش کارت، درگاه یو.اس.بی، کارت شبکه و کارت سریال. ‏

Space_Cube_The_smallest_PC_internals.jpg

مشخص است که این سخت‌افزار نمی‌تواند هیچ سیستم‌عامل مدرنی را اجرا کند اما نسخه‌های سبک لینوکس امکان اجرای گرافیکی روی این کامپیوتر و اتصال بدون دردسر به اینترنت را دارند. ‏

این مکعب جذاب در دو رنگ زرد و مشکی در ژاپن تولید شده است.

صفحات جانبی

نظرسنجی

    لطفاً نظرات خود را درمورد وبلاگ با اینجانب در میان بگذارید.(iman.sariri@yahoo.com)نتایج تاکنون15000مفید و 125غیرمفید. با سپاس


  • آخرین پستها

آمار وبلاگ

  • کل بازدید :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :