برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.

دایره المعارف تاسیسات برق (اطلاعات عمومی برق)


 

 مطلب دانلود کنید.

http://www.uplod.ir/download.php?file=478424

 

 

ساختمان ترانسفورماتور :

ترانسفورماتورها را میتوان با توجه به كاربرد و خصوصیات آنها به سه دسته كوچك متوسط و بزرگ دسته بندی كرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امكانات موجود ، كار ساده ای نیست ولی ترانسفورماتورهای كوچك را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای كوچك ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.


 

اجزای تشكیل دهنده یك ترانسفورماتور:

 

اجزای تشكیل دهنده یك ترانسفورماتور به شرح زیر است؛

هسته ترانسفورماتور:
هسته ترانسفورماتور متشكل از ورقه های نازك است كه سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای كم كردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یكپارچه ساخت. بلكه معمولا آنها را از ورقه های نازك فلزی كه نسبت به یكدیگر عایق‌اند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداكثر 4.5 درصد) كه دارای قابلیت هدایت الكتریكی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.

در اثر زیاد شدن مقدار سیلیسیم ، ورقه‌های دینام شكننده می شود. برای عایق كردن ورقهای ترانسفورماتور ، قبلا از یك كاغذ نازك مخصوص(کاغذ برشمان) كه در یك سمت این ورقه چسبانده می شود، استفاده می كردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یك لایه نازك اكسید فسفات یا سیلیكات به ضخامت 2 تا 20 میكرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاك مخصوص نیز برای عایق كردن یك طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یك لایه عایق هستند. بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور كرد.

ورقه‌های ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت كرد كه سطح عایق شده ى ورقه های ترانسفورماتور همگی در یك جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امكان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذكر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا كردن آنها نیز جلوگیری شود.


سیم پیچ ترانسفورماتور :

معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاكی استفاده می‌كنند. اینها با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر مشخص می‌شوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی كه به صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادی‌ها نیز استاندارد است.

توضیح سیم پیچی ترانسفورماتور به این ترتیب است كه سر سیم پیچ‌ها را به وسیله روكش عایقها از سوراخهای قرقره خارج كرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازك و لایه‌های اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روكش‌ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص كرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای كنترل و كسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش كرد.


قرقره ترانسفورماتور:
برای حفاظ و نگهداری از سیم پیچ‌های ترانسفورماتور خصوصا در ترانسفورماتورهای كوچك باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از كاغذ عایق سخت ، فیبرهای استخوانی

یا مواد ترموپلاستیك می سازند. قرقره هایی كه از جنس ترموپلاستیك هستند معمولا یك تكه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار كرد. بر روی دیواره های قرقره باید سوراخ یا شكافی ایجاد كرد تا سر سیم پیچ از آنها خارج شوند.

اندازه قرقره باید با اندازه ى ورقه‌های ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. كه از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه‌های ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی كرد.

اثر هارمونیك ها بر خازن ها
نقش خازنها به عنوان المان های الكتریكی و الكترونیكی كارآمد در صنایع مربوط به تولید و انتقال و توضیع امروزی غیر قابل انكار است بگونه ای كه دیگر هرگز نمی توان چنین صنایعی را بدون وجود خازنهای نیرو متصور شد.از این رو شناخت كامل خازنها و عوامل تاثیر گذار برآنها و حفظ و نگهداری و نظارت دقیق بر آنها ، برای افزایش طول عمر خازن ها و كار كرد بهینه آنها امری است الزامی و اجتناب ناپذیر.

كلید واژه- خازن قدرت ، فركانس ، هارمونیك ها.
مقدمه

درسالهای اولیه هارمونیكها در صنایع چندان رایج نبودند.به خاطر مصرف كننده های خطی متعادل. مانند : موتورهای القایی سه فاز،گرم كنندها وروشن كننده های ملتهب شونده تا درجه سفیدی و ..... این بارهای خطی جریان سینوسی ای در فركانسی برابر با فركانس ولتاژ می كشند. بنابراین با این تجهیزات اداره كل سیستم نسبتا با سلامتی بیشتری همراه بود. ولی پیشرفت سریع در الكترونیك صنعتی در كاربری صنعتی سبب بوجود آمدن بارهای غیر خطی صنعتی شد. در ساده ترین حالت ، بارهای غیرخطی شكل موج بار غیر سینوسی از شكل موج ولتاژ سینوسی رسم می كنند (شكل موج جریان غیر سینوسی).

پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یكسوسازهای 6 / 12 فاز و ... می باشند. بارهای غیرخطی شكل موج جریان را تخریب می كنند. در عوض این شكل موج جریان شكل موج ولتاژ را تخریب می نماید. بنابراین سامانه به سمت تخریب شكل موج  در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملكرد هارمونیك ها و راه كاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.


اساس هارمونیك ها :

اصولا هارمونیك ها آلوده سازی شكل موج را در اشكال سینوسی آنها نشان می دهند. ولی فقط در مضارب فركانس اصلی . تخریب شكل موج را می توان در فركانس های مختلف (مضارب فركانس اصلی) بعنوان یك نوسان دوره ای بوسیله آنالیز فوریه تجزیه و تحلیل كرد. در حال حاضر هارمونیكهای فرد و زوج و مرتبه 3 در اندازه های مختلف ضرایب فركانس های مختلف در سامانه های الكتریكی موجودند كه مستقیما تجهیزات سامانه الكتریكی را متاثر می سازند. در معنایی وسیعتر هارمونیكهای زوج و مرتبه 3 هریك تلاش می كنند كه دیگری را خنثی نمایند. ولی در مدت زمانی كه بار نا متعادل است این هارمونیك های زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژی شدید می شوند. با تمام احوال هارمونیك های فرد اول مانند هارمونیك پنجم ، هفتم ، یازدهم ، سیزدهم و .... عملكرد این تجهیزات الكتریكی را تحت تاثیر قرار می دهند. برای فهم بهتر تاثیر هارمونیك ها ، شكل زیر تاثیر تخریب هارمونیك پنجم بر شكل موج سینوسی را نشان می دهد :

 
 

هارمونیك های ولتاژ و جریان تاثیرات متفاوتی بر تجهیزات الكتریكی دارند. ولی عموما بیشتر تجهیزات الكتریكی به هارمونیكهای ولتاژ بسیار حساس اند. تجهیزات اصلی نیرو مانند موتورها، خازن ها و غیره بوسیله هارمونیكهای ولتاژ متاثر می شوند. به طور عمده هارمونیكهای جریان موجب تداخل مغناطیسی (Magnetic Interfrence) و همچنین موجب افزایش اتلاف در شبكه های توزیع می شوند. هارمونیكهای جریان وابسته به بار اند ، در حالی كه سطح هارمونیكهای ولتاژ به پایداری سامانه تغذیه و هارمونیكهای بار (هارمونیكهای جریان) بستگی دارد. عموما هارمونیك های ولتاژ از هارمونیك های جریان كمتر خواهند بود.    
 

تشدید:

اساسا تشدید سلفی – خازنی در همه انواع بارها مشاهده می شود. ولی اگر هارمونیك ها در شبكه توضیع شایع نباشند تاثیر تشدید فرونشانده می شود.
در هر تركیب سلفی – خازنی چه در حالت سری و چه در حالت موازی ، در فركانسی خاص تشدید رخ می دهد كه این فركانس خاص فركانس تشدید نامیده می شود. فركانس تشدید فركانسی است كه در آن رآكتنس خازنی (Xc) و رآكتنس القایی (XL) برابر هستند.
برای تركیبی مثالی برای بار صنعتی كه شامل اندوكتانس بار و یا رآكتنس ترانسفورماتور كه بعنوان XL عمل می كند و رآكتنس خازن تصحیح ضریب توان كه بصورت Xc خودنمایی می كند فركانس تشدیدی برابر با LC خواهیم داشت . رآكتنس خازنی متناسب با فركانس كاهش می یابد (توجه : Xc با فركانس نسبت عكس دارد). در حای كه رآكتنس القایی متناسب با آن افزایش می یابد (توجه
: XL با فركانس نسبت مستقیم دارد).این فركانس تشدید به سبب متغیر بودن الگوی بار متغیر خواهد بود. این مساله برای ظرفیت خازنی ثابت كل برای اصلاح ضریب توان پیچیده تر است. برای درك صحیح این پدیده لازم است دو نوع وضعیت تشدید شامل حالت تشدید سری و حالت تشدید موازی مورد توجه قرار گیرند. این دو امكان در زیر توضیح داده می شوند.

 
تشدید سری:

یك تركیب سری رآكتنس سلفی – خازنی ، مدار تشدید سری شكل می دهد كه در شكل زیر نشان داده شده است.
 
 
به خاطر تركیب سری سلف و خازن ، در فركانس تشدید امپدانس كل به پایین ترین سطح كاهش می یابد و این امپدانس در فركانس تشدید طبیعتی مقاومتی دارد. بنا براین در فركانس تشدید رآكتنس خازنی و رآكتنس سلفی (القایی) برابر هستند.این امپدانس پایین برای توان ورودی در فركانس تشدید ، افزایش توانی جریان را نتیجه می دهد.شكل داده شده زیر رفتار امپدانس خالص در وضعیت تشدید سری را نشان می دهد.

 
 


در كاربری صنعتی رآكتنس ترانسفورماتور قدرت به علاوه خازنهای اصلاح ضریب توان در سمت ولتاژ پایین به عنوان یك مدار تشدید موازی برای سمت ولتاژ بالای ترانسفورماتور عمل می كند. اگر این فركانس تشدید تركیب سلف و خازن بر فركانس هارمونیك شایع در صنعت منطبق شود ، بخاطر بستری با امپدانس پایین ارائه شده توسط خازن ها برای هارمونیك ها ، منجر به افزایش توانی جریان خازن ها خواهد شد. از این رو خازن های ولتاژ پایین در سطحی بسیار بالا اضافه بار پیدا خواهند كرد كه همچنین این عمل موجب تحمیل بار اضافی بر ترانسفورماتور می شود. این پدیده منجر به تخریب ولتاژ در شبكه ولتاژ پایین می شود.
 

تشدید موازی:


یك تشدید موازی تركیبی از رآكتنس خازنی و القایی است كه در شكل زیر نمایش داده شده است.
 
 

در اینجا رفتار امپدانس برعكس حالت تشدید موازی خواهد بود كه در شكل داده شده در زیر ، نشان داده شده است.در فركانس تشدید امپدانس منتجه مدار به مقداری بالا افزایش می یابد. این ، منجر به بوجود آمدن مدار تشدید موازی میان خازن های اصلاح ضریب توان و اندوكتانس بار می شود كه نتیجه آن عبور ولتاژ بسیار بالا هم اندازه  امپدانس ها و جریان های گردابی بسیار بالا درون حلقه خواهد بود.

 
 


در كاربری صنعتی خازن اصلاح ضریب توان مدار تشدید موازی با اندوكتانس بار تشكیل می دهد.هارمونیك های تولید شده از سمت بار رآكتنس شبكه را افزایش می دهند. كه موجب بلوكه شدن هارمونیك های سمت تغذیه می شود.این منجر به تشدید موازی اندوكتانس بار و اندوكتانس خازنی می شود. مدار LC (سلفی – خازنی) مواز ی ، شروع به تشدید میان آنها می كند كه منجر به ولتاژ بسیار بالا و جریان گردابی بسیار بالا در درون حلقه مدار سلف – خازن (LC) می شود. نتیجه این امر آسیب به تمام سمت ولتاژ پایین سامانه الكتریكی است.
ایزوله كردن تشدید موازی از ایزولاسیون تشدید سری نسبتا پیچیده تر است.اساسا این امر بخاطر تنوع بار صنعتی از زمانی به زمان دیگر است كه موجب تغییر فركانس تشدید می شود. شكل زیر تاثیر ظرفیت خازنی ثابت و اندوكتانس متغیر را نشان می دهد.
 


 
این تغییر مداوم فركانس تشدید ممكن است موجب تطبیق فركانس تشدید بر فركانس هارمونیك شود كه ممكن است منتج به ولتاژ بالا و جریان بالا كه سبب نقص و خرابی تجهیزات الكتریكی می شوند ، گردد.بنا بر این در هر دو تشدید موازی و سری خازنهای قدرت متاثر هستند كه بكار گیری دستگاه های حفاظتی و ایمنی را برای خازنها ایجاب می نماید. این امر درك صحیح بر خازنهای قدرت را قبل از از اعمال تصحیح بخاطر تاثیر هارمونیك ها و تشدید ایجاب می نماید.

 
خازنهای قدرت:

خازنهای اصلاح ضریب توان نسبت به هارمونیك ها حساس اند و بیشتر عیوب خازنهای قدرت ، عیوبی با طبیعت زیر را نشان می دهند :
هارمونیك ها – هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و ...
تشدید
اضافه ولتاژ
امواج كلید زنی
جریان هجومی
ولتاژ آنی بازگیری جرقه
تخلیه / بازبست ولتاژ
 
بسته به طراحی ساختاری اساسی ، حدود پایداری در مقابل اضافه ولتاژ ، اضافه جریان و هارمونیكها برای دور كردن خازن از خرابی بسیار مهم است.
اساسا خازن ها امواج كلید زنی تولید می كنند كه عموما به عنوان جریان هجومی و اضافه ولتاژ آنی دسته بندی می شوند.
جریان هجومی پدیده ای است كه هنگام به مدار وصل كردن خازن ها رخ می دهد. امپدانس ارائه شده توسط خازن طبیعتا بسیار كم و مقاومتی است. این امر منجر به جریان هجومی به بزرگی 50 تا 100 برابر جریان اسمی می شود كه از خازن عبور می كند ، اما چرا از خازن؟ زیرا امپدانس ترانسفورماتور در زمان روشن كردن خازن ها فقط در مقابل شار جریان مقاومت می كند.
این امر هنگامی پیچیده تر می گردد كه در تركیب موازی بانك خازنی ممكن است جریان هجومی كلید زنی به سطحی بالاتر از 200 تا 300 برابر جریان اسمی برسد. این جریان هجومی نتیجه تخلیه خازن های از پیش شارژ شده موازی با آن می باشد. در زیر این مطلب نشان داده شده است.نوعا جریان هجومی علاوه بر تخریب در شكل موج جریان سبب تخریب در شكل موج ولتاژ می شود.
 
 
در هنگام خاموش كردن (از مدار خارج كردن) خازن ها ، بسته به شارژ ذخیره شده در آن ، اضافه ولتاژ ناگهانی بالاتری در زمان خاموش كردن خازن ها بوجود خواهد آمد كه ممكن است موجب پدید آمدن جرقه در پایه ها شود.
هنگامی كه خازن خاموش می شود شار الكتریكی در خود نگه می دارد و بوسیله مقاومتهای تخلیه ، تخلیه (Discharge) می شود. مدت زمان تخلیه عموما بین 30 تا 60 ثانیه می باشد. تا زمانی كه تخلیه بشكل موثری صورت نگرفته نمی توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخلیه كامل دوباره موجب افزایش جریان هجومی می شود.
 
علاوه بر دستگاه های مسدود كننده هارمونیك ها كه با صحت خازن ها نسبت مستقیم دارند ، و در سر خط بعدی تشریح می شوند ، دستگاه های تحلیل برنده امواج كلید زنی مثل جریان هجومی ، اضافه ولتاژ آنی و غیره نیاز دارند كه بطور دقیق تعریف و بررسی شوند.
 
دستگاه های مسدود كننده هارمونیك ها:
برای كاربری سالم خازن ها لازم است كه فركانس تشدید مدار LC (سلف – خازن) كه شامل ادوكتانس بار و خازنهای اصلاح ضریب توان می شود ، به فركانسی دور از كمترین فركانس هارمونیك تغییر داده شود. برای مثال هارمونیك هایی كه در سامانه تولید می شوند و خازن های قدرت را متاثر می سازند ، هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و غیره هستند. پایین ترین هارمونیكی كه بر خازن ها تاثیر می گذارد هارمونیك پنجم است كه در فركانس 250 هرتز دیده می شود. اساسا اگر خازن ها با سلف ها موازی شده باشند ، انتخاب مقدار اندوكتانس به شكل زیر است :
تركیب سری LC (سلف – خازن) در فركانسی زیر 250هرتز تشدید می كند . بنابراین در همه فركانس های هارمونیك ها تركیب سری سلف و خازن مانند یك تركیب سلفی عمل خواهد كرد و امكان تشدید برای هارمونیك پنجم یا هر هارمونیك بالاتری از بین می رود. شكل زیر نامیزان سازی (De – Tuning) خازن ها را نشان می دهد.
 
 
این تركیب سلف و خازن كه در آن فركانس تشدید در فركانسی دور از فركانس هارمونیك تنظیم شده است ، مدار LC (سلف – خازن) نامیزان شده
(De-Tuned) نام دارد. ضریب نا میزان سازی نسبت رآكتنس به طرفیت خازنی است. در مدار خازنی نامیزان شده ، اساسا سلف مانند دستگاه مسدود كننده هارمونیك ها عمل می كند. برای خازن ها ضریب مناسب نامیزان سازی حدود % 7 است كه فركانس تشدید را در 189 هرتز تنظیم می كند.
اما ، نامیزان سازی % 5.67 همچنین در جایی استفاده می شود كه فركانس تشدیدی معادل 210 هرتز دارد . هر دو درجه نامیزان سازی ، مسدود كردن (بلوكه كردن) هارمونیك ها از خازن ها را تضمین می كنند. شكل زیر درجه نامیزان سازی را نمایش می دهد.

 
 
 


بانك های نامیزان سازی خازن:


بانك های نامیزان سازی خازن نیازمند آن هستندكه با نكات اساسی زیر مشخص شوند :
انتخاب درجه نامیزان سازی
محاسبه خازن كل خروجی مورد نیاز
محاسبه افزایش ولتاژ بوسیله سلف های سری
درجه نامیزان سازی مطلوب بر پایه هارمونیك موجود است. لازم است كه هارمونیك های سمت بار اندازه گیری شوند تا در درجه نامیزان تصمیم گیری شود.
*
خروجی خازن و سطح ولتاژ نیاز به انتخاب صحیح بر اساس درجه نامیزان سازی دارند. برای مثال برای %7 نامیزان سازی برای رسیدن به 200 كیلو ولت آمپر رآكتیو خروجی (KVAR) در 400 ولت ، نیاز به آن داریم كه خازن 240 KVAR خروجی با ولتاژ 400 ولت انتخاب نماییم. این بدلیل افزایش ولتاژ بوسیله اندوكتانس سری است. مشابها برای رسیدن به 200 KVAR خروجی در ولتاژ 440 ولت به خازن های 240 KVAR خروجی 480 ولتی نیاز است.
محاسبه افزایش ولتاژ به سبب رآكتنس سری ، بر اساس نامیزان سازی است و به روش زیر انجام می گیرد :
( درجه نامیزان سازی – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن
 

سامانه خازنی ایده آل:

برای تصحیح ضریب توان در بار صنعتی كنونی كه شامل هارمونیك ها و تشدید می شود ، یك سامانه اتصال خازنی اساسا باید خصوصیات زیر را دارا باشد :
ظرفیت خازنی متغیر بر اساس توان رآكتیو برای دوری از تغییر فركانس تشدید. این امر انتخاب صحیح پنل های APFC را ممكن می سازد. پنل APFC باید خصوصیات زیر را داشته باشد.
حسگرها باید به طور مداوم سطح هارمونیك های ولتاژ را نمایش دهد و خازن ها را تحت زیر سطوح بالاتر هارمونیك ها محافظت نماید.
انتخاب محدوده هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین شناخت تخریب همه هارمونیك ها برای تنظیم حدود ایمن و همچنین پیش بینی تغییرات بعدی هارمونیك ها.
مونیتورینگ جریان RMS برای محافظت خازن ها تحت هر حالت تشدید.
كنترل مشخصات ، برای دوری از بكارگیری ظرفیت مازاد خازنی تحت حالت كم بار.
انتخاب خازن با عمر بالا و با تضمین مشخصات زیر :
ظرفیت اضافه بار : حداقل دو برابر جریان اسمی به طور مداوم و 350 برابر آن هنگام جریان هجومی.
قابلیت پایداری در مقابل اضافه ولتاژ :بیشتر از %10 و بالاتر از ولتاژ مجاز بصورت پیوسته.
قابلیت پایداری در مقابل هارمونیك ها : تضمین محدوده های هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین برای محدوده های THD.
مدار سلفی De – Tuned برای مسدود كردن هارمونیك ها (الگوی هارمونیك بار باید قبل از تعیین درجه نامیزان سازی (De – Tuning) اندازه گیری شود).
انتخاب سطح خازن و سطح ولتاژ براساس درجه نامیزان سازی.
دستگاه های كلیدزنی با تقلیل دهنده های داخلی برای تقلیل امواج كلید زنی برای خازن های قدرت.
اساسا این خصوصیات با مطالعه متناسب هارمونیك های ولتاژ بار همراه است كه تضمین می كند كه تاثیر مخرب هارمونیك ها و تشدید از خازن ها دور شود كه بدین وسیله عمر خازن ها و كارایی كل سامانه الكتریكی را افزایش می دهد.
 

نتیجه گیری

علم به شرایط و خصوصیات خازن ها و عوامل موثر بر آنها از جمله هارمونیك ها نه تنها موجب افزایش امنیت و سلامتی و طول عمر آنها خواهد شد بلكه سبب كاهش هزینه های پیش بینی شده و نشده در بكار گیری انرژی الكتریكی می شود.

ساختمان ترانسهای قدرت روغنی :
قسمتهای اصلی در ساختمان ترانسفورماتورهای قدرت روغنی عبارتند از:
١ - هسته یك مدار مغناطیسی
٢- سیم پیچ های اولیه و ثانویه
٣- تانك اصلی روغن
به جز موارد فوق اجزا دیگری نیز به منظور اندازه گیری وحفاظت به شرح زیر وجوددارند :
١- كنسرواتوریا منبع انبساط روغن
٢ - تپ چنجر
٣ - ترمومترها
٤- نشان دهنده های سطح روغن
٥ - رله بوخهلتز
٦- سوپاپ اطمینان یا لوله انفجاری / شیر فشار شكن 
٧- رادیاتور یا مبدلهای حرارتی
٨- پمپ و فن ها
٩- شیرهای نمونه برداری از روغن پایین و بالای تانك
١٠ - شیرهای مربوط به پركردن و تخلیه روغن ترانس
١١ - مجرای تنفسی و سیلیكاژل مربوط به تانك اصلی و تب چنجر
١٢ - تابلوی كنترل
١٣ - تابلوی مكانیزم تب چنجر
١٤ - چرخ ها 

 ١٥ - پلاك مشخصات نامی 
  

 ١- هسته :
هسته ترانس یك مدار مغناطیسی خوب با حداقل فاصله هوایی و حداقل مقاومت مغناطیسی است تا فورانهای مغناطیسی براحتی از آن عبور كنند . هسته بصورت ورقه ورقه ساخته شده و ضخامت ورقه ها حدود0.3 میلیمتر و حتی كمتر است . برای كاهش تلفات فوكو ورقه ها تا حد امكان نازك ساخته می شوند و لی ضخامت آنها نباید بحدی برسد كه از نظر مكانیكی ضعیف شده و تاب بردارد .
در ترانسهای قدرت ضخامت ورقه ها معمولاً 0.3 یا 0.33 میلیمترانتخاب می شود كه این ورقه ها توسط لایه نازكی از وارنیش عایقی با یك سیم نازك عایقی ، نسبت به هم عایق می شوند .
٢
- سیم پیچی های ترانس
در ساختمان سیم پیچ های ترانس باید موارد متعددی در نظر گرفته شوند كه در ذیل به مهمترین آنها اشاره می نمائیم :
١  - در سیم پیچ هاباید جنبه های اقتصادی كه همان مصرف مقدار مس و راندمان ترانس می باشد ، مراعات شود .
 ٢ - ساختمان سیم پیچ ها برای رژیم حرارتی كه باید در آن كار كند محاسبه شود ، زیرا در غیر این صورت عمر ترانس كاسته خواهد شد .
٣- سیم پیچ ها در مقابل تنش ها و كشش های حاصل از اتصال كوتاه های ناگهانی مقاوم شوند
 ٤ - سیم پیچ ها باید در مقابل اضافه ولتاژهای ناگهانی از نقطه نظر عایق ، مقاومت لازم را داشته باشند .
سیم پیچ ترانس ها نسبت به هم در نوع سیم پیچ ، تعداد حلقه ها درجه و اندازه سیمها و ضخامت عایق بین حلقه ها متفوت خواهند بود . هر چه ولتاژ ترانس بالا برود ، تعداد حلقه های سیم پیچ بیشتر می شود و هر چه ظرفیت ترانس بیشتر شود ، اندازه سیم ها بزرگتر می گردد .
در ترانس با هسته ستونی ، سیم پیچها اعم از فشار قوی ، متوسط و فشار ضعیف و سیم پیچ تنظیم – بصورت استوانه متحدالمركز روی ستونهای هسته قرار می گیرند . معمولاً سیم پیچ فشار ضعیف در داخل و فشار قوی در خارج واقع می شوند و ترتیب فوق به این دلیل رعایت می شود كه عایق كاری فشار ضعیف نسبت به هسته راحت تر است .
  ٣- تانك اصلی روغن
تانك ترانس یك ظرف مكعب یا بیضوی شكل است كه هسته و سیم پیچ های ترانس در آن قرار می گیرند و نقش یك پوشش حفاظتی را برای آنها ایفا می كند داخل این ظرف از روغن پر می شود بطوریكه هسته و سیم پیچ كاملاً در روغن فرو می روند . سطح خارجی تانك تلفات گرمایی داخل ترانس را به بیرون منتقل می كند از هر مترمربع سطح تانك حدوداً 400 الی 450 وات توان گرمایی به خارج منتقل می شود ، بطوریكه در ترانسهای كوچك ، همین سطح برای خنك كاری كافی است و به تمهیدات دیگری نظیر رادیاتور وفن نیاز نمی باشد . در ترانسهای تا
KVA 50 بدنه تانك از ورق ساده فولادی به ضخامت حدوداً MM3 میلیمتر ساخته می شود ، سطح آن صاف بوده و نیازی به میله های تقویتی یا لوله های خنك كن ندارد . هر 4 وجه ترانس از یك ورق یك پارچه درست می شود و فقط در یك گوشه جوشكاری می گردد .
تانك ترانس بایستی موجب شود كه موارد مشروحه ذیل تأمین گردند :
- حفاظتی برای هسته ، سیم پیچ ، روغن و سایر متعلقات داخلی باشد .
- دارای استقامت كافی باشد كه در حین حمل و نقل و نیز در زمان اتصال كوتاه داخلی بتواند تنش های مكانیكی ایجاد شده را تحمل نماید .
- ارتعاشات و صدا در آن به حداقل برسد .
- ساختمان آن در برابر نشت روغن و یا نفوذ هوا كاملاً آب بندی باشد .
- سطوح كافی برای دفع گرمای ناشی از تلفات ترانس را تأمین كند .
- محلی برای نصب بوشینگها ، تب چنجر ، مخزن ذخیره روغن و سایر متعلقات باشد.
- از نظرابعاد در حد باشد كه براحتی قابل تحمل و حمل و نقل از طریق جاده یا راه آهن باشد .
- حداقل تلفات فوكو در آن ایجاد شود .
- حداقل میدان مغناطیسی در خارج از آن وجود داشته باشد .
به این ترتیب طراحی تانك ترانس به روش پیش بینی شده برای حمل و نفل آن نیز بستگی دارد.

 ٤- مقره ها ( بوشینگ ها (
سرهای خروجی سیم پیچ های فشار قوی و فشار ضعیف باید نسبت به بدنه فلزی تانك ، عایقكاری شوند . برای این منظور از مقره ها استفاده می شود . مقره یا بوشینگ تشكیل شده است از یك هادی مركزی كه توسط عایق های مناسبی در میان گرفته شده است .
بوشینگها روی در پوش فوقانی ترانس نصب می شوند و در موارد نادری بوشینگها را روی دیواره جانبی تانك هم نصب می كنند . انتهای پایینی مقره در داخل تانك جای می گیرد ، در حالیكه سر دیگر آن در بالای درپوش و در هوای خارج واقع می شود .
ترمینالهای هر دو سر دارای بستهای مناسبی برای اتصال به سر هادی های داخل ترانس و نیز هادی های

شبكه می باشند . شكل و اندازه بوشینگها به كلاس ولتاژ ، نوع محل ( داخل ساختمان یا در هوای آزاد ) و جریان نامی آن بستگی دارد . بوشینگهای داخل ساختمانی نسبتاً كوچك بوده و سطح آن صاف است ، اما بوشینگهای هوای آزاد كاملاً در معرض شرایط مختلف جوی نظیر برف و باران و آلودگی و ... قرار می گیرند ، بنابراین از نظر شكل كاملاً متفاوتند و از سپرهایی به شكل چتر تشكیل می شوند ، تا سطح زیرین آنها در مقابل باران خشك نگه داشته شوند . دراین صورت سطح خارجی آنها زیاد شده و فاصله خزش جرقه روی سطح چینی عایق زیادتر می گردد و در نتیجه استقامت الكتریكی بوشینگ افزایش می یابد .
در حال حاضر تمام ترانسهای با قدرت زیاد ، برای كار در هوای آزاد ساخته می شوند و مقره های عایقی ، برای ولتاژهای مختلف زیر موجود می باشند :
٥/٠و١و٣ و٦ تا ١٠ و٢٠ و ٣٥ و١١٠ و٢٢٠و٣٢٠ و٥٠٠ و٧٥٠ كیلووات. درترانسهای قدرت از ٣ تا١٠ كیلووالت، همان بوشینگ
kv10 بكارمی رود.برای ترانسهای kv 1 وكمتراز مقره چینی ساده یامقره اپوكسی زرین ساخته می شود .

سیستم های اندازه گیری و حفاظت ترانس
١- كنسرواتور یا منبع انبساط روغن
منبع ذخیره روغن كه به اسامی منبع انبساط و كنسرواتور نیز نامیده می شود ، تانكی است كه در بالاترین قسمت ترانس نصب می شود در حین تغییرات بار روزانه ، روغن ترانس انبساط وانقباض می یابد و در حین انبساط وارد منبع ذخیره می شود . اندازه و حجم منبع ذخیره به اندازه ترانس و تغییرات دمایی آن در هنگام بهره برداری بستگی دارد . در ترانسهایی كه دارای تب چنجر قابل قطع زیر بار هستند ، منبع انبساط به دو بخش تقسیم می گردد كه قسمت كوچكتر برای تب چنجر و قسمت بزرگتر برای تانك اصلی در نظر گرفته می شود . از بالای هر قسمت منبع ذخیره ، لوله ای به فضای آزاد آورده می شود ، كه به آن مجرای تنفسی می گویند (
Breather
) در ورودی این مجرا ظرف شیشه ای قرار دارد ، كه داخل آن از ماده ای رطوبت گیربه نام سیلیكاژل پرمی شود . به این ترتیب هوای ورودی به ترانس رطوبت خود را از دست داده و كاملاً خشك خواهد بود .
در هر قسمت منبع ذخیره ، یك نشان دهندة سطح روغن نصب می شود تا سطح روغن را در حین كار ترانس بتوان نظارت كرد و همچنین دو سطح منبع دیگر كه مجهز به كنتاكت آلارم می باشند نیز بر روی آنها نصب می گردند سطح خارجی منبع ذخیره نیز با رنگ مناسب پوشیده می شود تا از خوردگی و زنگ زدن محافظت گردد .
 ٢ - تپ چنجر
در بارهای مختلف افت ولتاژ در ترانسفورماتورها و خطوط نیز تغییر می كند و سبب تغییر ولتاژ شبكه می شود . كنترل ولتاژ شبكه های توزیع و انتقال عمدتاً توسط تب چنجر ایجاد می شود . اساس كار تب چنجر بر تغییر نسبت تبدیل ترانس استوار است . بدین ترتیب كه با انشعاباتی كه در سیم پیچ فشار قوی تعبیه می گردد تعداد دور سیم پیچ را تغییر داده و سبب تغییر ولتاژ خروجی ترانس می گردد. تپ چنجرها بطور گسترده ای برای كنترل ولتاژ شبكه در سطوح مختلف ولتاژی بكار گرفته می شوند . معمولاً كنترل ولتاژ در محدوده %١٥ +_ مقدور است . ولتاژ هر پله تب چنجر عموماً بین ١ تا ٥/٢ درصد تغییر می كند انتخاب مقدار كم برای پله ها سبب افزایش تعداد تپ ها می گردد و انتخاب مقدار بالا برای هر پله باعث عدم امكان تنظیم دقیق ولتاژ مورد نظر می گردد .
محل تپ چنجر :
در داخل تانك اصلی ، قسمتی را برای بخش اصلی تب چنجر ) دایورترسوئیچ ) در نظر گرفته اند این قسمت كاملاً آب بندی شده است داخل آن نیز با روغن ترانس پر شده است . این روغن كاملاً از روغن تانك اصلی جداست و باهم مخلوط نمی شود . تپ چنجر را در سمت فشار قوی نصب كرده اند كه دارای مزیت های زیرمی باشند :
الف) در طرف فشار قوی جریان كمتر است لذا برای تپ چنجرهایی كه زیر بار عمل می كنند حذف جرقه ساده تراست.
ب) چون تعداد دورسیم پیچهای فشارقوی بیشتر است ، لذا امكان تغییرات یكنواخت تروپه های كوچكتر به راحتی میسر است . در اتصال ستاره انشعابات تب چنجر را در سمت نقطه صفر قرار می دهند تا عایق كاری آن نسبت به زمین ساده تر باشد .
بهره برداری از ترانسفورماتورهای با تنظیم كننده ولتاژ زیر بار :
اكثر ترانسفورماتورها دارای دستگاهی بنام تب چنجر بوده كه كار آنها عملاً در مدار گذاشتن و خارج كردن تعدادی از حلقه های سیم پیچی ترانسفورماتور به منظور تغییر دادن در نسبت تبدیل ترانس می باشد . عموماً این دستگاه در قسمت فشار قوی قرار می گیرد .
تب چنجر ترانسفورماتورها عموماً بر ٢ نوع می باشند :
١  :
On load tap changer- ترانسفورماتورهایی كه تب آنها زمانی كه تپ ترانسفورماتور زیربار است ، قابل تغییر می باشد .
  ٢ :
Off load tap changer- ترانسفورماتورهایی كه تب آنها فقط زمانی كه در مدار نباشند ، قابل تغییر می باشند
این تغییر تپ در محل روی بدنه ترانس صورت می گیرد . به این ترتیب با توجه به تعداد تپ و اینكه هر تپ چه مقدار تغییر ولتاژ بوجود می آورد و نیاز به چه مقدار تغییر در ولتاژ می باشد ، تب آنها را بر حسب نیاز سیستم تغییر می دهیم . مكانیزم عمل تپ به طور كلی به این صورت است كه اهرمی قادر است در جهت گردش عقربه های ساعت تعداد حلقه های سیم پیچ را كم و در خلاف آن زیاد نماید.

اجزای ترانسفورماتور:1- هسته:

هسته ترانسفورماتور از ورق الکتریکی به ضخامت 0.3 میلیمتر که در عرض های مختلف بریده شده تشکیل میشود که در نهایت پس از چیدن دارای سطح مقطع تقریبا دایره ای شکل می گردد. به منظور کاهش تلفات آهن محل اتصال ورق ها به یکدیگر دارای زاویه 45 درجه می باشد و اتصال بصورت فاق و زبانه انجام میگیرد. 


2- سیم پیچ :

کلیه ترانسفورماتور های مصرف داخلی دارای دو سیم پیچ  

 (فشار قوی و فشار ضعیف )می باشند که در ابعاد مختلفی پیچیده میشوند.سیم پیچ های فشار ضعیف از سیم تخت با عایق کاغذی یا فویل مسی بصورت سیم پیچ استوانه ای تولید می گردد.سیم پیچ های فشار قوی از سیم گرد و یا تخت با عایق لاکی بصورت سیم پیچی لایه ای و برای قدرت بالاتر بصورت کلافی و مرکب از قرار گیری کلاف ها بروی هم تشکیل میشود .

جهت هدایت دمای حاصله(ناشی از تلفات مس ) به خارج و جلوگیری از تمرکز و ازدیاد دما در داخل سیم پیچ ها بر حسب مدل، کانال هایی موازی با محور یا عمود بر محور پیش بینی میشود. 

-    مواد عایقی : عایق بندی ترانسفورماتور توسط ...

مرغوبترین مواد عایقی مانند کاغذ عایق ، مقوای عایق و فیبر عایق صورت می گیرد. رطوبت هوای محیط که به مرور در مواد عایقی راه می یابد توسط کوره های خشک کننده تحت خلا جدا می گردد  بطوریکه مواد عایقی موجود ترانسفورماتور کاملا خشک و عاری از رطوبت می باشند.

4-  انشعابات سیم پیچ و قابلیت تنظیم ولتاژ :

تغییرات جزئی ولتاژ شبکه را می توان با تغییر نقاط اتصال سیم پیچ فشار قوی بر طرف نمود، بنحوی که ولتاژ مورد نیاز مصرف کننده ثابت بماند. تغییر دادن نقاط اتصال و استفاده از انشعابات سیم پیچ فشار قوی در حالت بی برقی توسط کلید تنظیم ولتاژ صورت می گیرد.

تنظیم وتغییر ولتاژ در سیم پیچ فشار ضعیف، کمتر صورت می گیرد.معمولا در طرف فشارضعیف ولتاژ400 ولت  ( سه  فاز) و 231 ولت برای تک فاز می باشد.

5-    مخزن :

ترانسفور ماتور ها بسته به قدرت ، گرمای حاصله و استحکام مکانیکی مورد لزوم دارای مخازنی از نوع ورق صاف  کنگره ای و یا رادیاتوری می باشند. کف مخزن محکمتر از سایر نقاط آن ساخته شده و شاسی مجهز به چرخ های انتقال به آن جوش داده می شود .در قسمت پایین مخزن شیر تخلیه روغن نصب گردیده است. همچنین پیچ هایی جهت برقراری ارت در نظر گرفته میشود.

6-  مقره های فشار قوی و فشار ضعیف :

بروی مقره های فشار قوی جرقه گیرهایی متناسب با میزان بزرگترین ولتاژ ضربه ای قابل تحمل و ارتفاع محل نصب از سطح دریا تنظیم میگردد.

7- سیستم انبساط روغن :

الف ) منبع انبساط :

جهت انتقال روغن از ترانس به این مخزن در برابراضافه حجم روغن و از مخزن به ترانس در صورت کمبود روغن است.

ب ) سیستم هرمتیک :

در این نوع ترانسها ، منبع انبساط وجود ندارد و انبساط و انقباض وله ها روی مخزن تحت فشار روغن داخل آن فضای لازم جهت جبران وافزایش – کاهش حجم روغن را ایجاد می نماید، لذا در این نوع ترانسفورماتورها منبع انبساط و رطوبت گیر وجود ندارد.

تجهیزات نصب شده روی ترانسفورماتور :

1- رله بوخهلتس :

این رله بروی ترانسهای کنسرواتور دار نصب میشود و برای ترانسهای هرمتیک میتوان از تجهیزات خاص همچون رله هرمتیک و DGPT که عملکرد مشابه بوخهلتس دارند استفاده نمود. در این وسیله حفاظتی، گاز های ایجاد شده از تجزیه روغن ناشی از تخلیه جزئی و کامل و نقاط داغ غیر مجاز در داخل ترانسفورماتور جمع میشود، بطوریکه اگر میزان گاز بوجود آمده از حد معینی تجاوز نماید با اتصال دو کنتاکت موجود در آن آلارم و سپس فرمان قطع ارسال میشود.

2- ترمومتر روغن :

ترمو متر با داشتن یک عقربه، میزان دمای روغن ترانسفورماتور را نشان میدهد و دارای دو میکرو سوئیچ قابل تنظیم بوده که با توجه به دمای مجاز روغن تنظیم میگردند. از این کنتاکت ها میتوان برای فرمان اخطار و قطع استفاده نمود.

3- رطوبت گیر :

بروی کلیه ترانس ها رطوبت گیر نصب می گردد. در حالت عادی رنگ ماده رطوبت گیر باید آبی تیره باشد که پس از اشباع با رطوبت به رنگ صورتی روشن تغییر رنگ داده که در این صورت باید آن را با ماده خشک تعویض نمود.

4- روغن نما :

الف ) روغن نما عقربه ای :

درجه روغن نما در روی منبع انبساط جهت نشان دادن سطح روغن نصب می گردد. عقربه روغن نما در دمای محیط 20 درجه سانتیگراد باید روی علامت 20+ قرار گیرد.

ب) روغن نما چشمی :

با توجه به عدم وجود منبع انبساط در ترانسهای هرمتیک جهت کنترل سطح روغن و شارژ احتمالی روغن از  FILLING PIPE که روی در پوش نصب میشود استفاده می گردد. جهت کنترل سطح روغن از روغن نمای چشمی استفاده شده که قرار داشتن گوی داخل آن در بالا نشاندهنده سطح روغن مناسب در ترانس است

در ساختمان سیم پیچ های ترانس باید موارد متعددی را در نظر گرفته شوند که در ذیل به مهمترین آنها اشاره می نماییم :

۱- در سیم پیچ ها باید جنبه های اقتصادی که همان مصرف مقدارمس و راندمان ترانس می باشد ،در نظر گرفته شود .

۲- ساختمان سیم پیچ ها برای رژیم حرارتی که باید در آن کار کند محاسبه شود، زیرا درغیر اینصورت عمر ترانس کاسته خواهد شد.(Oill or Winding) Tampreture که در این حالات با توجه به وضعیت آب وهوائی ،موقعیت جغرافیایی میزان رطوبت درجه حرارت روغن وسیم پیچ ترانس طراحی میشود .در این حالت اگر دمای روغن تا مرز۹۵ْ درجه بالا رود وضعیت عادی به محض بالا رفتن درجه حرارت روغن وسیم پیچ از دمای فوق ذکر به بالا ابتدا آژیری توسط رله های حفاظتی ایجاد میشود اگر بالاتر ازحد مجاز ۱۰۵ْ درجه باشد ترانسفورماتور اصولاً تریپ می خورد.

۳- سیم پیچ ها در مقابل تنش ها وکشش های حاصل از اتصال کوتاه های ناگهانی مقاوم باشند.

۴- سیم پیچها باید در مقابل اضافه ولتاژهای شبکه ،موجی،از نقطه نظر عایقی ، مقاومت لازم رادارا باشد.

همانطوریکه از ۴ بند ذکر شده می توان فهمید . که مواد فوق از لحاظ بررسی بعضی از پارامترها متضاد یکدیگرند .فرضاً وقتی چگالی جریان را با کوچک انتخاب کردن سطح مقطع مس افزایش می دهیم اندازه مس مصرفی را کم می کنیم ،لیکن درمقابل حرارت یا انرژی تلف شده بصورت گرمای ژولی را فزایش داده ودر نتیجه راندمان را کاسته ایم .در ترانسهای باقدرت کم ازسیم مسی ویا آلومینیومی ترانسهای با قدرت زیاد از سیم مسی استفاده می شود.

معمولاً معمولاً ضخامت عایق سیم ها ،برحسب قطرضخامت بیان  می گردد وطوری انتخاب می شود که کلاس ولتاژ ترانس داده شده را برآورده نماید. برای ترانسهای با ولتاژ بالا و یا بالاتر ضخامت عایقی متغیر خواهد بود رابطه تجربی را برای عایق بندی نسبت به زمین وعایق بندی بین سیم پیچ های فشار قوی وضعیف نوشت .

ضخامت عایق به میلیمتر

سیم پیچ ترانسها نسبت به هم در نوع سیم پیچ ،تعدادحلقه ها،درجه واندازه ،سیمها وضخامت عایق بین حلقه ها متفاوت خواهند بود . هرچه ولتاژ ترانس بالاتر رود ،تعداد حلقه های سیم پیچ بیشتر میشود وهرچه ظرفیت ترانس بالاتر رود ،تعداد حلقه های سیم پیچ بیشتر میشود وهر چه ظرفیت ترانس بیشتر شود، اندازه سیمها بزرگتر می گردد.

چگالی جریان

چگالی جریان درسیمها برمبنای افزایش درجه حرارت محاسبه می شود وبسته به ظرفیت وطراحی ترانس ،برای سیم مسی از ۲ تا ۵/۴  تغییر می کند ومقدار معمول آن ۵/۲ تا ۳ می باشد .در ترانسهای کوچک اگر از سیم آلومینیومی استفاده شود ،چگالی جریان از ۱ تا ۵/۲ تغییر خواهد کرد.

ترتیب قرارگرفتن سیم پیچ هانسبت به هسته

در ترانس با هسته ستونی ، سیم پیچ ها بصورت استوانه های متحدالمرکزی روی ستونهای هسته قرار می گیرند معمولاً‌ سیم پیچ فشارضعیف در داخل وفشارقوی درخارج واقع می شوند وترتیب فوق به این دلیل رعایت می شود که عایق کاری فشار ضعیف نسبت به هسته راحت تر است.


صفحات جانبی

نظرسنجی

    لطفاً نظرات خود را درمورد وبلاگ با اینجانب در میان بگذارید.(iman.sariri@yahoo.com)نتایج تاکنون15000مفید و 125غیرمفید. با سپاس


  • آخرین پستها

آمار وبلاگ

  • کل بازدید :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :