خواندنی ها+برق، قدرت، کنترل، الکترونیک، مخابرات، کامپیوتر، مهندسی پزشکی، ابزار دقیق، الکتروتکنیک، هوش مصنوعی، آی تیIT(فناوری اطلاعات)، مکاترونیک، رباتیک، فتونیک، اویونیکAvionic، فیزیک


دایره المعارف برق(اطلاعات عمومی برق)iman.sariri@yahoo.com

IN THE NAME OF GOD  :::.. ..:::

 

 


This Article Is Powered By Sadegh Aroodi Pour

And Is A  Project For Electronic

To Have The Best Introduction Of  This Product I Perform It In English & Farsi

Special Thanks To Dr PIRMORADIAN

The Source Of This Article Is From Internet Websites

See Our Weblog At  http://eleele.blogfa.com 

Electronic  Engineers  Of   Islamshahr  Univercity

Leave Your Comment To Make It Better Than  Before

 

With Best Wishes For You SADEGH  R

…:::  Contents  :::...

Electromagnetic Pulse Bomb……………………………………..…………….. 3

Introduction……………………………………………………………….…….......4

EMP Effect ……………………...………………………………………………….5

Technology Base for Conventional Electromagnetic Bombs ……………….. 6

Explosively Pumped Flux Compression Generators ………….…………… 7,8

Explosive and Propellant Driven MHD Generators ……………………….….. 9

High Power Microwave Sources - Vircator ………………………..…………..10

Lethality of Electromagnetic Warheads ……………………...………………. 11

Coupling Modes ………………………………………………..…………….12,13

Maximising Electromagnetic Bomb Lethality ………………………… 14,15,16

Targeting Electromagnetic Bombs ………………………...……………… 17,18

Delivery of Conventional Electromagnetic Bombs ………..…………….. 19,20

Defence Against Electromagnetic Bombs …………………………………21,22

Limitations of Electromagnetic Bombs ……………………………..………… 23

Proliferation of Electromagnetic Bombs ………………………..……………. 24

A Doctrine for the Use of Conventional Electromagnetic Bombs…….……. 25

 


Electromagnetic Pulse Bomb

A Weapon of Electronic Mass Destruction: High Power Electromagnetic Pulse generation techniques and High Power Microwave technology have matured to the point where practical Electromagnetic bombs (E-bombs) are becoming technically feasible, with new applications in both Strategic and Tactical Information Warfare. The development of conventional E-bomb devices allows their use in non-nuclear confrontations. This article discusses aspects of the technology base, weapon delivery techniques and proposes a doctrinal foundation for the use of such devices in warhead and bomb applications.
 
Introduction
The prosecution of a successful Information Warfare (IW) campaign against an industrialised or post industrial opponent will require a suitable set of tools. As demonstrated in the Desert Storm air campaign, air power has proven to be a most effective means of inhibiting the functions of an opponent's vital information processing infrastructure. This is because air power allows concurrent or parallel engagement of a large number of targets over geographically significant areas.
While Desert Storm demonstrated that the application of air power was the most practical means of crushing an opponent's information processing and transmission nodes, the need to physically destroy these with guided munitions absorbed a substantial proportion of available air assets in the early phase of the air campaign. Indeed, the aircraft capable of delivering laser guided bombs were largely occupied with this very target set during the first nights of the air battle.
The efficient execution of an IW campaign against a modern industrial or post-industrial opponent will require the use of specialised tools designed to destroy information systems. Electromagnetic bombs built for this purpose can provide, where delivered by suitable means, a very effective tool for this purpose.
 
EMP Effect
The ElectroMagnetic Pulse (EMP) effect was first observed during the early testing of high altitude airburst nuclear weapons. The effect is characterised by the production of a very short (hundreds of nanoseconds) but intense electromagnetic pulse, which propagates away from its source with ever diminishing intensity, governed by the theory of electromagnetism. The ElectroMagnetic Pulse is in effect an electromagnetic shock wave.
This pulse of energy produces a powerful electromagnetic field, particularly within the vicinity of the weapon burst. The field can be sufficiently strong to produce short lived transient voltages of thousands of Volts (ie kiloVolts) on exposed electrical conductors, such as wires, or conductive tracks on printed circuit boards, where exposed.
It is this aspect of the EMP effect which is of military significance, as it can result in irreversible damage to a wide range of electrical and electronic equipment, particularly computers and radio or radar receivers. Subject to the electromagnetic hardness of the electronics, a measure of the equipment's resilience to this effect, and the intensity of the field produced by the weapon, the equipment can be irreversibly damaged or in effect electrically destroyed. The damage inflicted is not unlike that experienced through exposure to close proximity lightning strikes, and may require complete replacement of the equipment, or at least substantial portions thereof.
Commercial computer equipment is particularly vulnerable to EMP effects, as it is largely built up of high density Metal Oxide Semiconductor (MOS) devices, which are very sensitive to exposure to high voltage transients. What is significant about MOS devices is that very little energy is required to permanently wound or destroy them, any voltage in typically in excess of tens of Volts can produce an effect termed gate breakdown which effectively destroys the device. Even if the pulse is not powerful enough to produce thermal damage, the power supply in the equipment will readily supply enough energy to complete the destructive process. Wounded devices may still function, but their reliability will be seriously impaired. Shielding electronics by equipment chassis provides only limited protection, as any cables running in and out of the equipment will behave very much like antennae, in effect guiding the high voltage transients into the equipment.
Computers used in data processing systems, communications systems, displays, industrial control applications, including road and rail signalling, and those embedded in military equipment, such as signal processors, electronic flight controls and digital engine control systems, are all potentially vulnerable to the EMP effect.
Other electronic devices and electrical equipment may also be destroyed by the EMP effect. Telecommunications equipment can be highly vulnerable, due to the presence of lengthy copper cables between devices. Receivers of all varieties are particularly sensitive to EMP, as the highly sensitive miniature high frequency transistors and diodes in such equipment are easily destroyed by exposure to high voltage electrical transients. Therefore radar and electronic warfare equipment, satellite, microwave, UHF, VHF, HF and low band communications equipment and television equipment are all potentially vulnerable to the EMP effect.
It is significant that modern military platforms are densely packed with electronic equipment, and unless these platforms are well hardened, an EMP device can substantially reduce their function or render them unusable.
 
Technology Base for Conventional Electromagnetic Bombs
The technology base which may be applied to the design of electromagnetic bombs is both diverse, and in many areas quite mature. Key technologies which are extant in the area are explosively pumped Flux Compression Generators (FCG), explosive or propellant driven Magneto-Hydrodynamic (MHD) generators and a range of HPM devices, the foremost of which is the Virtual Cathode Oscillator or Vircator. A wide range of experimental designs have been tested in these technology areas, and a considerable volume of work has been published in unclassified literature.
This paper will review the basic principles and attributes of these technologies, in relation to bomb and warhead applications. It is stressed that this treatment is not exhaustive, and is only intended to illustrate how the technology base can be adapted to an operationally deployable capability.
 


Explosively Pumped Flux Compression Generators
The explosively pumped FCG is the most mature technology applicable to bomb designs. The FCG was first demonstrated by Clarence Fowler at Los Alamos National Laboratories (LANL) in the late fifties. Since that time a wide range of FCG configurations has been built and tested, both in the US and the USSR, and more recently CIS.
The FCG is a device capable of producing electrical energies of tens of MegaJoules in tens to hundreds of microseconds of time, in a relatively compact package. With peak power levels of the order of TeraWatts to tens of TeraWatts, FCGs may be used directly, or as one shot pulse power supplies for microwave tubes. To place this in perspective, the current produced by a large FCG is between ten to a thousand times greater than that produced by a typical lightning stroke.
The central idea behind the construction of FCGs is that of using a fast explosive to rapidly compress a magnetic field, transferring much energy from the explosive into the magnetic field.
The initial magnetic field in the FCG prior to explosive initiation is produced by a start current. The start current is supplied by an external source, such a a high voltage capacitor bank (Marx bank), a smaller FCG or an MHD device. In principle, any device capable of producing a pulse of electrical current of the order of tens of kiloAmperes to MegaAmperes will be suitable.
A number of geometrical configurations for FCGs have been published. The most commonly used arrangement is that of the coaxial FCG. The coaxial arrangement is of particular interest in this context, as its essentially cylindrical form factor lends itself to packaging into munitions.
 
In a typical coaxial FCG , a cylindrical copper tube forms the armature. This tube is filled with a fast high energy explosive. A number of explosive types have been used, ranging from B and C-type compositions to machined blocks of PBX-9501. The armature is surrounded by a helical coil of heavy wire, typically copper, which forms the FCG stator. The stator winding is in some designs split into segments, with wires bifurcating at the boundaries of the segments, to optimise the electromagnetic inductance of the armature coil.
The intense magnetic forces produced during the operation of the FCG could potentially cause the device to disintegrate prematurely if not dealt with. This is typically accomplished by the addition of a structural jacket of a non-magnetic material. Materials such as concrete or Fibreglass in an Epoxy matrix have been used. In principle, any material with suitable electrical and mechanical properties could be used. In applications where weight is an issue, such as air delivered bombs or missile warheads, a glass or Kevlar Epoxy composite would be a viable candidate.
It is typical that the explosive is initiated when the start current peaks. This is usually accomplished with a explosive lense plane wave generator which produces a uniform plane wave burn (or detonation) front in the explosive. Once initiated, the front propagates through the explosive in the armature, distorting it into a conical shape (typically 12 to 14 degrees of arc). Where the armature has expanded to the full diameter of the stator, it forms a short circuit between the ends of the stator coil, shorting and thus isolating the start current source and trapping the current within the device.
The propagating short has the effect of compressing the magnetic field, whilst reducing the inductance of the stator winding. The result is that such generators will producing a ramping current pulse, which peaks before the final disintegration of the device. Published results suggest ramp times of tens to hundreds of microseconds, specific to the characteristics of the device, for peak currents of tens of MegaAmperes and peak energies of tens of MegaJoules.
The current multiplication (ie. ratio of output current to start current) achieved varies with designs, but numbers as high as 60 have been demonstrated. In a munition application, where space and weight are at a premium, the smallest possible start current source is desirable. These applications can exploit cascading of FCGs, where a small FCG is used to prime a larger FCG with a start current. Experiments conducted by LANL and AFWL have demonstrated the viability of this technique.
The principal technical issues in adapting the FCG to weapons applications lie in packaging, the supply of start current, and matching the device to the intended load. Interfacing to a load is simplified by the coaxial geometry of coaxial and conical FCG designs. Significantly, this geometry is convenient for weapons applications, where FCGs may be stacked axially with devices such a microwave Vircators. The demands of a load such as a Vircator, in terms of waveform shape and timing, can be satisfied by inserting pulse shaping networks, transformers and explosive high current switches.
 
Explosive and Propellant Driven MHD Generators
The design of explosive and propellant driven Magneto-Hydrodynamic generators is a much less mature art that that of FCG design. Technical issues such as the size and weight of magnetic field generating devices required for the operation of MHD generators suggest that MHD devices will play a minor role in the near term. In the context of this paper, their potential lies in areas such as start current generation for FCG devices.
The fundamental principle behind the design of MHD devices is that a conductor moving through a magnetic field will produce an electrical current transverse to the direction of the field and the conductor motion. In an explosive or propellant driven MHD device, the conductor is a plasma of ionised explosive or propellant gas, which travels through the magnetic field. Current is collected by electrodes which are in contact with the plasma jet.
The electrical properties of the plasma are optimised by seeding the explosive or propellant with with suitable additives, which ionise during the burn. Published experiments suggest that a typical arrangement uses a solid propellant gas generator, often using conventional ammunition propellant as a base. Cartridges of such propellant can be loaded much like artillery rounds, for multiple shot operation.


High Power Microwave Sources - Vircator
Whilst FCGs are potent technology base for the generation of large electrical power pulses, the output of the FCG is by its basic physics constrained to the frequency band below 1 MHz. Many target sets will be difficult to attack even with very high power levels at such frequencies, moreover focussing the energy output from such a device will be problematic. A HPM device overcomes both of the problems, as its output power may be tightly focussed and it has a much better ability to couple energy into many target types.
A wide range of HPM devices exist. Relativistic Klystrons, Magnetrons, Slow Wave Devices, Reflex triodes, Spark Gap Devices and Vircators are all examples of the available technology base [GRANATSTEIN87, HOEBERLING92]. From the perspective of a bomb or warhead designer, the device of choice will be at this time the Vircator, or in the nearer term a Spark Gap source. The Vircator is of interest because it is a one shot device capable of producing a very powerful single pulse of radiation, yet it is mechanically simple, small and robust, and can operate over a relatively broad band of microwave frequencies.
The physics of the Vircator tube are substantially more complex than those of the preceding devices. The fundamental idea behind the Vircator is that of accelerating a high current electron beam against a mesh (or foil) anode. Many electrons will pass through the anode, forming a bubble of space charge behind the anode. Under the proper conditions, this space charge region will oscillate at microwave frequencies. If the space charge region is placed into a resonant cavity which is appropriately tuned, very high peak powers may be achieved. Conventional microwave engineering techniques may then be used to extract microwave power from the resonant cavity. Because the frequency of oscillation is dependent upon the electron beam parameters, Vircators may be tuned or chirped in frequency, where the microwave cavity will support appropriate modes. Power levels achieved in Vircator experiments range from 170 kiloWatts to 40 GigaWatts over frequencies spanning the decimetric and centimetric bands.
 
The two most commonly described configurations for the Vircator are the Axial Vircator (AV) (Fig.3), and the Transverse Vircator (TV). The Axial Vircator is the simplest by design, and has generally produced the best power output in experiments. It is typically built into a cylindrical waveguide structure. Power is most often extracted by transitioning the waveguide into a conical horn structure, which functions as an antenna. AVs typically oscillate in Transverse Magnetic (TM) modes. The Transverse Vircator injects cathode current from the side of the cavity and will typically oscillate in a Transverse Electric (TE) mode.
Technical issues in Vircator design are output pulse duration, which is typically of the order of a microsecond and is limited by anode melting, stability of oscillation frequency, often compromised by cavity mode hopping, conversion efficiency and total power output. Coupling power efficiently from the Vircator cavity in modes suitable for a chosen antenna type may also be an issue, given the high power levels involved and thus the potential for electrical breakdown in insulators.
 
Lethality of Electromagnetic Warheads
The issue of electromagnetic weapon lethality is complex. Unlike the technology base for weapon construction, which has been widely published in the open literature, lethality related issues have been published much less frequently.
While the calculation of electromagnetic field strengths achievable at a given radius for a given device design is a straightforward task, determining a kill probability for a given class of target under such conditions is not.
This is for good reasons. The first is that target types are very diverse in their electromagnetic hardness, or ability to resist damage. Equipment which has been intentionally shielded and hardened against electromagnetic attack will withstand orders of magnitude greater field strengths than standard commercially rated equipment. Moreover, various manufacturer's implementations of like types of equipment may vary significantly in hardness due the idiosyncrasies of specific electrical designs, cabling schemes and chassis/shielding designs used.
The second major problem area in determining lethality is that of coupling efficiency, which is a measure of how much power is transferred from the field produced by the weapon into the target. Only power coupled into the target can cause useful damage.
 
Coupling Modes
In assessing how power is coupled into targets, two principal coupling modes are recognised in the literature:
Front Door Coupling occurs typically when power from a electromagnetic weapon is coupled into an antenna associated with radar or communications equipment. The antenna subsystem is designed to couple power in and out of the equipment, and thus provides an efficient path for the power flow from the electromagnetic weapon to enter the equipment and cause damage.
Back Door Coupling occurs when the electromagnetic field from a weapon produces large transient currents (termed spikes, when produced by a low frequency weapon ) or electrical standing waves (when produced by a HPM weapon) on fixed electrical wiring and cables interconnecting equipment, or providing connections to mains power or the telephone network. Equipment connected to exposed cables or wiring will experience either high voltage transient spikes or standing waves which can damage power supplies and communications interfaces if these are not hardened. Moreover, should the transient penetrate into the equipment, damage can be done to other devices inside.

A low frequency weapon will couple well into a typical wiring infrastructure, as most telephone lines, networking cables and power lines follow streets, building risers and corridors. In most instances any particular cable run will comprise multiple linear segments joined at approximately right angles. Whatever the relative orientation of the weapons field, more than one linear segment of the cable run is likely to be oriented such that a good coupling efficiency can be achieved.
It is worth noting at this point the safe operating envelopes of some typical types of semiconductor devices. Manufacturer's guaranteed breakdown voltage ratings for Silicon high frequency bipolar transistors, widely used in communications equipment, typically vary between 15 V and 65 V. Gallium Arsenide Field Effect Transistors are usually rated at about 10V. High density Dynamic Random Access Memories (DRAM), an essential part of any computer, are usually rated to 7 V against earth. Generic CMOS logic is rated between 7 V and 15 V, and microprocessors running off 3.3 V or 5 V power supplies are usually rated very closely to that voltage. Whilst many modern devices are equipped with additional protection circuits at each pin, to sink electrostatic discharges, sustained or repeated application of a high voltage will often defeat these.
Communications interfaces and power supplies must typically meet electrical safety requirements imposed by regulators. Such interfaces are usually protected by isolation transformers with ratings from hundreds of Volts to about 2 to 3 kV.
It is clearly evident that once the defence provided by a transformer, cable pulse arrestor or shielding is breached, voltages even as low as 50 V can inflict substantial damage upon computer and communications equipment. The author has seen a number of equipment items (computers, consumer electronics) exposed to low frequency high voltage spikes (near lightning strikes, electrical power transients), and in every instance the damage was extensive, often requiring replacement of most semiconductors in the equipment.
HPM weapons operating in the centimetric and millimetric bands however offer an additional coupling mechanism to Back Door Coupling. This is the ability to directly couple into equipment through ventilation holes, gaps between panels and poorly shielded interfaces. Under these conditions, any aperture into the equipment behaves much like a slot in a microwave cavity, allowing microwave radiation to directly excite or enter the cavity. The microwave radiation will form a spatial standing wave pattern within the equipment. Components situated within the anti-nodes within the standing wave pattern will be exposed to potentially high electromagnetic fields.
Because microwave weapons can couple more readily than low frequency weapons, and can in many instances bypass protection devices designed to stop low frequency coupling, microwave weapons have the potential to be significantly more lethal than low frequency weapons.
 
What research has been done in this area illustrates the difficulty in producing workable models for predicting equipment vulnerability. It does however provide a solid basis for shielding strategies and hardening of equipment.
The diversity of likely target types and the unknown geometrical layout and electrical characteristics of the wiring and cabling infrastructure surrounding a target makes the exact prediction of lethality impossible.
A general approach for dealing with wiring and cabling related back door coupling is to determine a known lethal voltage level, and then use this to find the required field strength to generate this voltage. Once the field strength is known, the lethal radius for a given weapon configuration can be calculated.
A trivial example is that of a 10 GW 5 GHz HPM device illuminating a footprint of 400 to 500 metres diameter, from a distance of several hundred metres. This will result in field strengths of several kiloVolts per metre within the device footprint, in turn capable of producing voltages of hundreds of volts to kiloVolts on exposed wires or cables. This suggests lethal radii of the order of hundreds of metres, subject to weapon performance and target set electrical hardness.
 
 
Maximising Electromagnetic Bomb Lethality
To maximise the lethality of an electromagnetic bomb it is necessary to maximise the power coupled into the target set.
The first step in maximising bomb lethality is is to maximise the peak power and duration of the radiation of the weapon. For a given bomb size, this is accomplished by using the most powerful flux compression generator (and Vircator in a HPM bomb) which will fit the weapon size, and by maximising the efficiency of internal power transfers in the weapon. Energy which is not emitted is energy wasted at the expense of lethality.
The second step is to maximise the coupling efficiency into the target set. A good strategy for dealing with a complex and diverse target set is to exploit every coupling opportunity available within the bandwidth of the weapon.
A low frequency bomb built around an FCG will require a large antenna to provide good coupling of power from the weapon into the surrounding environment. Whilst weapons built this way are inherently wide band, as most of the power produced lies in the frequency band below 1 MHz compact antennas are not an option. One possible scheme is for a bomb approaching its programmed firing altitude to deploy five linear antenna elements.
These are produced by firing off cable spools which unwind several hundred metres of cable. Four radial antenna elements form a "virtual" earth plane around the bomb, while an axial antenna element is used to radiate the power from the FCG. The choice of element lengths would need to be carefully matched to the frequency characteristics of the weapon, to produce the desired field strength. A high power coupling pulse transformer is used to match the low impedance FCG output to the much higher impedance of the antenna, and ensure that the current pulse does not vapourise the cable prematurely.
Other alternatives are possible. One is to simply guide the bomb very close to the target, and rely upon the near field produced by the FCG winding, which is in effect a loop antenna of very small diameter relative to the wavelength. Whilst coupling efficiency is inherently poor, the use of a guided bomb would allow the warhead to be positioned accurately within metres of a target. An area worth further investigation in this context is the use of low frequency bombs to damage or destroy magnetic tape libraries, as the near fields in the vicinity of a flux generator are of the order of magnitude of the coercivity of most modern magnetic materials.
 
Microwave bombs have a broader range of coupling modes and given the small wavelength in comparison with bomb dimensions, can be readily focussed against targets with a compact antenna assembly. Assuming that the antenna provides the required weapon footprint, there are at least two mechanisms which can be employed to further maximise lethality.
 
The first is sweeping the frequency or chirping the Vircator. This can improve coupling efficiency in comparison with a single frequency weapon, by enabling the radiation to couple into apertures and resonances over a range of frequencies. In this fashion, a larger number of coupling opportunities are exploited.
The second mechanism which can be exploited to improve coupling is the polarisation of the weapon's emission. If we assume that the orientations of possible coupling apertures and resonances in the target set are random in relation to the weapon's antenna orientation, a linearly polarised emission will only exploit half of the opportunities available. A circularly polarised emission will exploit all coupling opportunities.
 
The practical constraint is that it may be difficult to produce an efficient high power circularly polarised antenna design which is compact and performs over a wide band. Some work therefore needs to be done on tapered helix or conical spiral type antennas capable of handling high power levels, and a suitable interface to a Vircator with multiple extraction ports must devised. A possible implementation is depicted in Fig.5. In this arrangement, power is coupled from the tube by stubs which directly feed a multi-filar conical helix antenna. An implementation of this scheme would need to address the specific requirements of bandwidth, beamwidth, efficiency of coupling from the tube, while delivering circularly polarised radiation.
Another aspect of electromagnetic bomb lethality is its detonation altitude, and by varying the detonation altitude, a tradeoff may be achieved between the size of the lethal footprint and the intensity of the electromagnetic field in that footprint. This provides the option of sacrificing weapon coverage to achieve kills against targets of greater electromagnetic hardness, for a given bomb size (Fig.7, 8). This is not unlike the use of airburst explosive devices.
In summary, lethality is maximised by maximising power output and the efficiency of energy transfer from the weapon to the target set. Microwave weapons offer the ability to focus nearly all of their energy output into the lethal footprint, and offer the ability to exploit a wider range of coupling modes. Therefore, microwave bombs are the preferred choice.
 
Targeting Electromagnetic Bombs
The task of identifying targets for attack with electromagnetic bombs can be complex. Certain categories of target will be very easy to identify and engage. Buildings housing government offices and thus computer equipment, production facilities, military bases and known radar sites and communications nodes are all targets which can be readily identified through conventional photographic, satellite, imaging radar, electronic reconnaissance and humint operations. These targets are typically geographically fixed and thus may be attacked providing that the aircraft can penetrate to weapon release range. With the accuracy inherent in GPS/inertially guided weapons, the electromagnetic bomb can be programmed to detonate at the optimal position to inflict a maximum of electrical damage.
 
Mobile and camouflaged targets which radiate overtly can also be readily engaged. Mobile and relocatable air defence equipment, mobile communications nodes and naval vessels are all good examples of this category of target. While radiating, their positions can be precisely tracked with suitable Electronic Support Measures (ESM) and Emitter Locating Systems (ELS) carried either by the launch platform or a remote surveillance platform. In the latter instance target coordinates can be continuously datalinked to the launch platform. As most such targets move relatively slowly, they are unlikely to escape the footprint of the electromagnetic bomb during the weapon's flight time.
Mobile or hidden targets which do not overtly radiate may present a problem, particularly should conventional means of targeting be employed. A technical solution to this problem does however exist, for many types of target. This solution is the detection and tracking of Unintentional Emission (UE). UE has attracted most attention in the context of TEMPEST surveillance, where transient emanations leaking out from equipment due poor shielding can be detected and in many instances demodulated to recover useful intelligence. Termed Van Eck radiation, such emissions can only be suppressed by rigorous shielding and emission control techniques, such as are employed in TEMPEST rated equipment.
Whilst the demodulation of UE can be a technically difficult task to perform well, in the context of targeting electromagnetic bombs this problem does not arise. To target such an emitter for attack requires only the ability to identify the type of emission and thus target type, and to isolate its position with sufficient accuracy to deliver the bomb. Because the emissions from computer monitors, peripherals, processor equipment, switchmode power supplies, electrical motors, internal combustion engine ignition systems, variable duty cycle electrical power controllers (thyristor or triac based), superheterodyne receiver local oscillators and computer networking cables are all distinct in their frequencies and modulations, a suitable Emitter Locating System can be designed to detect, identify and track such sources of emission.
A good precedent for this targeting paradigm exists. During the SEA (Vietnam) conflict the United States Air Force (USAF) operated a number of night interdiction gunships which used direction finding receivers to track the emissions from vehicle ignition systems. Once a truck was identified and tracked, the gunship would engage it.
 
Because UE occurs at relatively low power levels, the use of this detection method prior to the outbreak of hostilities can be difficult, as it may be necessary to overfly hostile territory to find signals of usable intensity. The use of stealthy reconnaissance aircraft or long range, stealthy Unmanned Aerial Vehicles (UAV) may be required. The latter also raises the possibility of autonomous electromagnetic warhead armed expendable UAVs, fitted with appropriate homing receivers. These would be programmed to loiter in a target area until a suitable emitter is detected, upon which the UAV would home in and expend itself against the target.
 
Delivery of Conventional Electromagnetic Bombs
As with explosive warheads, electromagnetic warheads will occupy a volume of physical space and will also have some given mass (weight) determined by the density of the internal hardware. Like explosive warheads, electromagnetic warheads may be fitted to a range of delivery vehicles.
Known existing applications involve fitting an electromagnetic warhead to a cruise missile airframe. The choice of a cruise missile airframe will restrict the weight of the weapon to about 340 kg (750 lb), although some sacrifice in airframe fuel capacity could see this size increased. A limitation in all such applications is the need to carry an electrical energy storage device, eg a battery, to provide the current used to charge the capacitors used to prime the FCG prior to its discharge. Therefore the available payload capacity will be split between the electrical storage and the weapon itself.
In wholly autonomous weapons such as cruise missiles, the size of the priming current source and its battery may well impose important limitations on weapon capability. Air delivered bombs, which have a flight time between tens of seconds to minutes, could be built to exploit the launch aircraft's power systems. In such a bomb design, the bomb's capacitor bank can be charged by the launch aircraft enroute to target, and after release a much smaller onboard power supply could be used to maintain the charge in the priming source prior to weapon initiation.
An electromagnetic bomb delivered by a conventional aircraft can offer a much better ratio of electromagnetic device mass to total bomb mass, as most of the bomb mass can be dedicated to the electromagnetic device installation itself. It follows therefore, that for a given technology an electromagnetic bomb of identical mass to a electromagnetic warhead equipped missile can have a much greater lethality, assuming equal accuracy of delivery and technologically similar electromagnetic device design.
A missile borne electromagnetic warhead installation will comprise the electromagnetic device, an electrical energy converter, and an onboard storage device such as a battery. As the weapon is pumped, the battery is drained. The electromagnetic device will be detonated by the missile's onboard fusing system. In a cruise missile, this will be tied to the navigation system; in an anti-shipping missile the radar seeker and in an air-to-air missile, the proximity fusing system. The warhead fraction (ie ratio of total payload (warhead) mass to launch mass of the weapon) will be between 15% and 30%.
An electromagnetic bomb warhead will comprise an electromagnetic device, an electrical energy converter and a energy storage device to pump and sustain the electromagnetic device charge after separation from the delivery platform. Fusing could be provided by a radar altimeter fuse to airburst the bomb, a barometric fuse or in GPS/inertially guided bombs, the navigation system. The warhead fraction could be as high as 85%, with most of the usable mass occupied by the electromagnetic device and its supporting hardware.
Due to the potentially large lethal radius of an electromagnetic device, compared to an explosive device of similar mass, standoff delivery would be prudent. Whilst this is an inherent characteristic of weapons such as cruise missiles, potential applications of these devices to glidebombs, anti-shipping missiles and air-to-air missiles would dictate fire and forget guidance of the appropriate variety, to allow the launching aircraft to gain adequate separation of several miles before warhead detonation.
The recent advent of GPS satellite navigation guidance kits for conventional bombs and glidebombs has provided the optimal means for cheaply delivering such weapons. While GPS guided weapons without differential GPS enhancements may lack the pinpoint accuracy of laser or television guided munitions, they are still quite accurate (CEP \(~~ 40 ft) and importantly, cheap, autonomous all weather weapons.
 
The USAF has recently deployed the Northrop GAM (GPS Aided Munition) on the B-2 bomber, and will by the end of the decade deploy the GPS/inertially guided GBU-29/30 JDAM (Joint Direct Attack Munition)[MDC95] and the AGM-154 JSOW (Joint Stand Off Weapon) [PERGLER94] glidebomb. Other countries are also developing this technology, the Australian BAeA AGW (Agile Glide Weapon) glidebomb achieving a glide range of about 140 km (75 nmi) when launched from altitude.
The importance of glidebombs as delivery means for HPM warheads is threefold. Firstly, the glidebomb can be released from outside effective radius of target air defences, therefore minimising the risk to the launch aircraft. Secondly, the large standoff range means that the aircraft can remain well clear of the bomb's effects. Finally the bomb's autopilot may be programmed to shape the terminal trajectory of the weapon, such that a target may be engaged from the most suitable altitude and aspect.
A major advantage of using electromagnetic bombs is that they may be delivered by any tactical aircraft with a nav-attack system capable of delivering GPS guided munitions. As we can expect GPS guided munitions to be become the standard weapon in use by Western air forces by the end of this decade, every aircraft capable of delivering a standard guided munition also becomes a potential delivery vehicle for a electromagnetic bomb. Should weapon ballistic properties be identical to the standard weapon, no software changes to the aircraft would be required.
Because of the simplicity of electromagnetic bombs in comparison with weapons such as Anti Radiation Missiles (ARM), it is not unreasonable to expect that these should be both cheaper to manufacture, and easier to support in the field, thus allowing for more substantial weapon stocks. In turn this makes saturation attacks a much more viable proposition.
In this context it is worth noting that the USAF's possesion of the JDAM capable F-117A and B-2A will provide the capability to deliver E-bombs against arbitrary high value targets with virtual impunity. The ability of a B-2A to deliver up to sixteen GAM/JDAM fitted E-bomb warheads with a 20 ft class CEP would allow a small number of such aircraft to deliver a decisive blow against key strategic, air defence and theatre targets. A strike and electronic combat capable derivative of the F-22 would also be a viable delivery platform for an E-bomb/JDAM. With its superb radius, low signature and supersonic cruise capability an RFB-22 could attack air defence sites, C3I sites, airbases and strategic targets with E-bombs, achieving a significant shock effect. A good case may be argued for the whole F-22 build to be JDAM/E-bomb capable, as this would allow the USAF to apply the maximum concentration of force against arbitrary air and surface targets during the opening phase of an air campaign.
 
Defence Against Electromagnetic Bombs
The most effective defence against electromagnetic bombs is to prevent their delivery by destroying the launch platform or delivery vehicle, as is the case with nuclear weapons. This however may not always be possible, and therefore systems which can be expected to suffer exposure to the electromagnetic weapons effects must be electromagnetically hardened.
The most effective method is to wholly contain the equipment in an electrically conductive enclosure, termed a Faraday cage, which prevents the electromagnetic field from gaining access to the protected equipment. However, most such equipment must communicate with and be fed with power from the outside world, and this can provide entry points via which electrical transients may enter the enclosure and effect damage. While optical fibres address this requirement for transferring data in and out, electrical power feeds remain an ongoing vulnerability.
 
Where an electrically conductive channel must enter the enclosure, electromagnetic arresting devices must be fitted. A range of devices exist, however care must be taken in determining their parameters to ensure that they can deal with the rise time and strength of electrical transients produced by electromagnetic devices. Reports from the US indicate that hardening measures attuned to the behaviour of nuclear EMP bombs do not perform well when dealing with some conventional microwave electromagnetic device designs.
It is significant that hardening of systems must be carried out at a system level, as electromagnetic damage to any single element of a complex system could inhibit the function of the whole system. Hardening new build equipment and systems will add a substantial cost burden. Older equipment and systems may be impossible to harden properly and may require complete replacement. In simple terms, hardening by design is significantly easier than attempting to harden existing equipment.
An interesting aspect of electrical damage to targets is the possibility of wounding semiconductor devices thereby causing equipment to suffer repetitive intermittent faults rather than complete failures. Such faults would tie down considerable maintenance resources while also diminishing the confidence of the operators in the equipment's reliability. Intermittent faults may not be possible to repair economically, thereby causing equipment in this state to be removed from service permanently, with considerable loss in maintenance hours during damage diagnosis. This factor must also be considered when assessing the hardness of equipment against electromagnetic attack, as partial or incomplete hardening may in this fashion cause more difficulties than it would solve. Indeed, shielding which is incomplete may resonate when excited by radiation and thus contribute to damage inflicted upon the equipment contained within it.
Other than hardening against attack, facilities which are concealed should not radiate readily detectable emissions. Where radio frequency communications must be used, low probability of intercept (ie spread spectrum) techniques should be employed exclusively to preclude the use of site emissions for electromagnetic targeting purposes. Appropriate suppression of UE is also mandatory.
Communications networks for voice, data and services should employ topologies with sufficient redundancy and failover mechanisms to allow operation with multiple nodes and links inoperative. This will deny a user of electromagnetic bombs the option of disabling large portions if not the whole of the network by taking down one or more key nodes or links with a single or small number of attacks.
 
Limitations of Electromagnetic Bombs
The limitations of electromagnetic weapons are determined by weapon implementation and means of delivery. Weapon implementation will determine the electromagnetic field strength achievable at a given radius, and its spectral distribution. Means of delivery will constrain the accuracy with which the weapon can be positioned in relation to the intended target. Both constrain lethality.
In the context of targeting military equipment, it must be noted that thermionic technology (ie vacuum tube equipment) is substantially more resilient to the electromagnetic weapons effects than solid state (ie transistor) technology. Therefore a weapon optimised to destroy solid state computers and receivers may cause little or no damage to a thermionic technology device, for instance early 1960s Soviet military equipment. Therefore a hard electrical kill may not be achieved against such targets unless a suitable weapon is used.
This underscores another limitation of electromagnetic weapons, which is the difficulty in kill assessment. Radiating targets such as radars or communications equipment may continue to radiate after an attack even though their receivers and data processing systems have been damaged or destroyed. This means that equipment which has been successfully attacked may still appear to operate. Conversely an opponent may shut down an emitter if attack is imminent and the absence of emissions means that the success or failure of the attack may not be immediately apparent.
Assessing whether an attack on a non radiating emitter has been successful is more problematic. A good case can be made for developing tools specifically for the purpose of analysing unintended emissions, not only for targeting purposes, but also for kill assessment.
An important factor in assessing the lethal coverage of an electromagnetic weapon is atmospheric propagation. While the relationship between electromagnetic field strength and distance from the weapon is one of an inverse square law in free space, the decay in lethal effect with increasing distance within the atmosphere will be greater due quantum physical absorption effects. This is particularly so at higher frequencies, and significant absorption peaks due water vapour and oxygen exist at frequencies above 20 GHz. These will therefore contain the effect of HPM weapons to shorter radii than are ideally achievable in the K and L frequency bands.
Means of delivery will limit the lethality of an electromagnetic bomb by introducing limits to the weapon's size and the accuracy of its delivery. Should the delivery error be of the order of the weapon's lethal radius for a given detonation altitude, lethality will be significantly diminished. This is of particular importance when assessing the lethality of unguided electromagnetic bombs, as delivery errors will be more substantial than those experienced with guided weapons such as GPS guided bombs.
Therefore accuracy of delivery and achievable lethal radius must be considered against the allowable collateral damage for the chosen target. Where collateral electrical damage is a consideration, accuracy of delivery and lethal radius are key parameters. An inaccurately delivered weapon of large lethal radius may be unusable against a target should the likely collateral electrical damage be beyond acceptable limits. This can be a major issue for users constrained by treaty provisions on collateral damage.
 
Proliferation of Electromagnetic Bombs
At the time of writing, the United States and the CIS are the only two nations with the established technology base and the depth of specific experience to design weapons based upon this technology. However, the relative simplicity of the FCG and the Vircator suggests that any nation with even a 1940s technology base, once in possession of engineering drawings and specifications for such weapons, could manufacture them.
As an example, the fabrication of an effective FCG can be accomplished with basic electrical materials, common plastic explosives such as C-4 or Semtex, and readily available machine tools such as lathes and suitable mandrels for forming coils. Disregarding the overheads of design, which do not apply in this context, a two stage FCG could be fabricated for a cost as low as $1,000-2,000, at Western labour rates. This cost could be even lower in a Third World or newly industrialised economy.
While the relative simplicity and thus low cost of such weapons can be considered of benefit to First World nations intending to build viable war stocks or maintain production in wartime, the possibility of less developed nations mass producing such weapons is alarming. The dependence of modern economies upon their information technology infrastructure makes them highly vulnerable to attack with such weapons, providing that these can be delivered to their targets.
Of major concern is the vulnerability resulting from increasing use of communications and data communications schemes based upon copper cable media. If the copper medium were to be replaced en masse with optical fibre in order to achieve higher bandwidths, the communications infrastructure would become significantly more robust against electromagnetic attack as a result.
However, the current trend is to exploit existing distribution media such as cable TV and telephone wiring to provide multiple Megabit/s data distribution (eg cable modems, ADSL/HDSL/VDSL) to premises. Moreover, the gradual replacement of coaxial Ethernet networking with 10-Base-T twisted pair equipment has further increased the vulnerability of wiring systems inside buildings. It is not unreasonable to assume that the data and services communications infrastructure in the West will remain a "soft" electromagnetic target in the forseeable future.
At this time no counter-proliferation regimes exist. Should treaties be agreed to limit the proliferation of electromagnetic weapons, they would be virtually impossible to enforce given the common availability of suitable materials and tools.
With the former CIS suffering significant economic difficulties, the possibility of CIS designed microwave and pulse power technology leaking out to Third World nations or terrorist organisations should not be discounted. The threat of electromagnetic bomb proliferation is very real.
 
A Doctrine for the Use of Conventional Electromagnetic Bombs
A fundamental tenet of IW is that complex organisational systems such as governments, industries and military forces cannot function without the flow of information through their structures. Information flows within these structures in several directions, under typical conditions of function. A trivial model for this function would see commands and directives flowing outward from a central decisionmaking element, with information about the state of the system flowing in the opposite direction. Real systems are substantially more complex

 

See More At  www. ELE ELE. BLOGFA .com


بمب الکترومغناطیس:ویرانگرترین سلاح،باوجدانترین سلاح


بمب های الکترومغناطیس بمب هایی هستند که برای تخریب هدف،از یک پالس شدید الکترومغناطیس بهره می برند.اثرات مخرب پالس الکترومغناطیس،تمام سامانه های الکتریکی و الکترونیکی در شعاع تخریب را از کار می اندازد. از آنجاییکه بدن موجودات زنده و از جمله انسان در مقابل امواج الکترومغناطیس مقاوم است،لذا انفجار این نوع بمب تلفات انسانی به همراه ندارد،اما اثرات مخرب آن بر روی سامانه های اطلاعاتی،بویژه انواع بمب های الکترومغناطیس با فناوری هسته ای که شعاع تخریب بسیار گسترده ای دارند،عملا جامعه هدف را به پیش از عصر اطاعات باز میگرداند. این مقاله سعی دارد بطور اجمالی جوانب فنی و عملیاتی کاربرد این سلاح،مبانی و راهکارهای احتمالی دفاع در برابر آن را مرور نماید.

مقدمه

2000 سال قبل تئورسین نظامی چین،سان تزو،رساله ای تحت عنوان هنر جنگ نوشت که در بخشی از آن سعی در پاسخگویی به این مساله دارد که چگونه بدون جنگیدن در میدان نبرد،حریف را شکست داد.در عصر حاضر که موسوم به عصر اطلاعات است،این شیوه جنگی که با عنوان جنگ اطلاعات شناخته می شود،عملا امکان پذیر گشته است.این نوع جنگ،اشاره به وضعیتی دارد که در آن عملیات نظامی بر اطلاعات نیروهای خودی و ایجاد اختلال در اطلاعات دشمن تکیه دارد

تلاش برای تغیر توازن دانش و اطلاعات به نفع خود و استفاده از اطلاعات برای به حداقل رساندن سرمایه،جنگ افزار و نیروی انسانی مورد نیاز برای کسب پیروزی از اهداف اصلی این شیوه جنگی به شمار می رود.اجرای موثر جنگ اطلاعات علیه حریف،نیازمند استفاده از ابزار های خاص برای تخریب سامانه های اطلاعاتی خواهد بود.بانکهای اطلاعاتی نظامی و غیر نظامی،شبکه های رایانه ای ادرات دولتی و کارخانه های تولیدی،تاسیسات ارتباطی پایگاه های نظامی،سایت های راداری و موشکی،سامانه های بانکداری و مالی،رسانه های گروهی،شبکه های توزیع برق و ارتباط راه دور از اهداف اصلی جنگ اطلاعات خواهد بود.علاوه بر این گونه سامانه ها،جایگاه انکار ناپذیر وسایل الکتریکی و الکترونیکی در ساختار نظامی،آنها را به هدفی مبدل ساخته که انهدام آنها بدون تلفات انسانی،می تواند دشمن را در موقعیت شکست قرار دهد.از مهم ترین سلاح ها در این زمینه می توان به انواع بمب های الکترومغناطیس اشاره نمود که نقش بسیار موثری در پیروزی در صحنه جنگ اطلاعاتی دارند.بر ساس گزارش های موجود،نیروی دریایی آمریکا در خلال جنگ کویت و یوگوسلاوی سابق از نمونه ای بسیار پیشرفته از بمب های الکترومغناطیسی غیر هسته ای به منظور انهدام تجهیزات الکترونیکی نیروهای عراقی و صرب بهره برد.این کشور همچنین از این نوع بمب در جنگ اخیر علیه شبکه ماهواره ای تلوزیون عراق نیز استفاده کرد.

اثر الکترومغناطیس

نور شدیدی ساطع می شود،در یک لحظه همه چیز در خاموشی فرو میرود،بوی سوختن وسایل الکتریکی در فضا می پیچد،پوشش سیمها سوخته و خطوط نازک تلفن قطع می شود و مهم تر از همه درون هیچ رایانه ای حتی که بیت اطلاعات باقی نمانده و در عین حال هیچ کس کوچکترین آسیبی ندیده است.تمام این موارد ناشی از انفجار بمب الکترومغناطیس و تاثیرات پالس الکترومغناطیس حاصل روی سامانه های اطراف می باشد. اثر پالس الکترومغناطیس در طی آزمایش های هسته ای مشاهده شد.مشخصه این اثر،تولید یک پالس الکترومغناطیس خیلی کوتاه(صد نانو ثانیه)اما بسیار شدید می باشد که از منبع انتشار ساطع می شود.پالس الکترومغناطیس یک میدان پر قدرت الکترومغناطیس،بویژه در محل انفجار تولید تولید می کند که توانایی تولید هزاران ولت جریان کوتاه مدت و گذرا روی هادیهای الکتریکی از جمله سیمها و مسیر های هادی صفحات مدار چاپی را داراست و البته همین اثر است که دارای اهمیت نظامی است و می نواند اثرات تخریبی جبران ناپذیری روی محدوده وسیعی از تجهیزات الکتریکی و الکترونیکی بویژه رایانه ها،رادیوها یا سامانه های راداری بگذارد.شدت میدان تولید شده و سختی  الکترومغناطیسی قطعات الکترونیکی که بیانگر مقاومت تجهیزات در مقابل این اثر میباشد،تعیین کننده مقدار تخریب ایجاد شده روی تجهیزات تحت شعاع قرار گرفته است.

مقدار تخریب می تواند از تخریب جبران ناپذیر و انهدام کامل الکتریکی و الکترونیکی در نزدیکی انفجار تا تخریبات کمتر  در نواحی دورتر که تنها نیازمند جایگزینی برخی قطعات و بخش های آسیب دیده می باشد را شامل شود.در فواصل دورتر،تخریب ایجاد شده با از کار افتادن موقت سامانه خودنمایی می کند که معمولا پس از مدتی امکان استفاده مجدد از آن وجود دارد،اما معمولا قابلیت اطمینان این گونه سامانه ها به شدت کاهش یافته است.از آنجایی که تجهیزات رایانه های تجاری مجموعه ای از نیمه هادی های اکسید فلزی می باشد که به پالس های ولتاژ بالا بسیار حساس هستند،لذا این سامانه های در مقابل اثر پالس الکترومغناطیس آسیب پذیری بیشتری دارند.معمولا انرژی بسیار کمی برای تخریب این سامانه ها مورد نیاز بوده و ولتاژی متجاوز از ده ها ولت براحتی می تواند بر روی آنها تاثیر ویرانگری بگذارد.رایانه های مورد استفاده در سامانه های پردازش اطلاعات،سامانه های اطلاعاتی،نمایشگر ها،تاسیسات کنترل صنعتی و رایانه های متصل به تجهیزات نظامی از جمله پردازش گر ها،سامانه های دیجیتالی و تجهیزات الکترونیکی کنترل پرواز همگی در مقابل اثر پالس الکترومغناطیس آسیب پذیر می باشند. به علت وجود کابل های مسی طویل بین تجهیزات ارتباطات راه دور،این تجهیزات نیز شدیدا آسیب پذیر هستند.از آنجاییکه دیود ها و ترانزیستورهای فرکانس بالا و مینیاتوری موجود در گیرنده ها که دارای حساسیت بالایی هستند،با آسانی یه وسیله پالس های الکتریکی ولتاژ بالا تخریب می شوند،لذا این تجهیزات نسبت به پالس الکترومغناطیس کاملا حساس می باشند.رادارها و تجهیزات نظامی الکترونیکی،ماهواره ها،میکروویو،UHF،VHF،HF،و تجهیزات ارتباطات باند کوتاه و تجهیزات تلوزیونی همگی نسبت به پالس الکترومغناطیس حساس هستند.از طرف دیگر از آنجاییکه تجهیزات پیشرفته و جدید کنونی معمولا به صورت فشرده ارایه می شوند،در صورت آسیب دیدن جزیی از آن،کل سامانه از کار افتاده و امکان تعویض یا تعمیر بخشی از آن وجود ندارد.در کل می توان چنین اظهار داشت که هیچ وسیله الکتریکی و الکترونیکی از قدرت نابودگر پالس های الکترومغناطیس در امان نیست.

مبانی فناوری بمب های الکترومغناطیس

پایه فناوری مورد استفاده در طراحی بمب های الکترومغناطیس متفاوت می باشد که مهمترین آنها مولد فشاری شار پمپ شده انفجاری،مولد مفناطیسی هیدرودینامیکی انفجاری و طیف گسترده ای از سامانه های پر توان میکروویو  می باشد که مهم ترین نمونه از دسته سوم،نوسان کننده کاتدی مجازی موسوم به ویرکیتور است.

تلاش جهت ساخت بمبهای الکترومغناطیسی هسته ای بین ده های 60 تا 80 میلادی توسط آمریکا صورت گرفت.در 1958و1962،آمریکایی ها بمب های هیدروژنی روی اقیانوس آرام آزمایش کردند که نتایج جالب توجهی به همراه داشت.تاثیرات این انفجار های هسته ای در هاوایی(1000 مایل دورتر) و حتی دورتر از مناطقی همچون استرالیا به صورت اختلالات رادیویی مشاهده شد.متخصصان هسته ای این اختلالات را ناشی از اثر کامپتون دانستند.این اثر که به وسیله آرتور کامپتون در سال 1925 شناخته شد،بیان می دارد که فوتون های انرژی الکترومغناطیس می توانند  الکترون اتمهای با عدد اتمی پایین را جدا کنند.سیل الکترون های آزاد شده از اتمها یک میدان مغناطیسی قدرتمند ایجاد می کند که این میدان،یک جریان الکتریکی شدید روی مواد هادی تحت تشعشع ایجاد میکند.طراحی این نوع بمب الکترومغناطیس که با عنوان پالس های الکترومغناطیس ارتفاع زیاد شناخته می شد نیازمند دانش هسته ای و طراحی سامانه های راداری است.این نوع بمب،قابلیت تحت تاثیر قرار دادن محدوده وسیعی را دارد اما در مقابل با محدودیت هزینه تولید و مباحث ناشی از انفجار های هسته ای مواجه است.

1-مولد فشاری شار پمپ شده انفجاری

مولد فشاری شار پمپ شده انفجاری موسوم به FCG،کاملترین فناوری کاربردی در طراحی بمب های مولد فشاری شار پمپ شده انفجاری است که اولین بار به وسیله کلارنس فولر در آزمایشگاه های لوس آلاموس در اوخر دهه پنجاه اریه شد.از آن زمان تا کنون،گستره ی وسیعی از انواع FCG در آمریکا و روسیه ساخته و آزمایش شده است.FCG سامانه ای با توانایی تولید دهها مگاژول انرژی الکتریکی با توان بین یک تا دهها تریلیون وات(10 به توان 12)در مدت زمان ده تا صد ها میکرو ثانیه است.جریان تولید شده به و وسله FCGبین 10 تا هزاران برابر جریانی است که به وسیله رعد و برق تولید می شود.

مبنای اصلی ساخت این نوع بمب استفاده ار مواد منفجره برای فشرده سازی سریع میدان مغناطیسی است.میدان مغناطیسی اولیه مورد نیاز در FCGقبل از شروع انفجار و از منابع خارجی همچون بانک خازنی ولتاژ بالا،یک FCG کوچکتر یا سامانه MHD(مولد مغناطیسی هیدرودینامیکی)تامین می شود. با این وجود هر سامانه ای که قادر به تولید پالس جریان الکتریکی در حد ده ها کیلو آمپر تا یک مگا آمپر باشد،کاربردی خواهد بود.از میان طراحی های مختلف FCG،نوع هم محور رایجترین طراحی می باشد.در یک FCGهم محور،یک لوله مسی استوانه ای نقش آرمیچر را ایفا میکند.این لوله با یک ماده شدید الانفجار پر می شود. از انواع مختلف مواد منفجره همچون ترکیبات نوع Bو C تا قطعات ماشین کاری شده PBX-9501می توان بهره برد.اطراف آرمیچر را یک سیم پیچ سنگین که معمولا از جنس مس می باشد در بر گرفته که نقش استاتورFCGرا دارد.حاصل این ترکیب،موادی است که توان تولید پالس الکترومغناطیس قدرتمندی را داراست.معمولا روی استاتور  پوششی از جنس مواد غیر مغناطیس نیز کشیده می شود تا مانع از شکل گیری میدان های ناخواسته و تخریب احتمالی سامانه شود.موادی همچون الیاف شیشه در یک قالب اپوکسی،پوششی مناسب فراهم می کند.

ماده منفجره از عقب به جلو منفجر می شود که انفجار حاصل،سیم پیچهای حاوی جریان اکتریکی را تحت تاثیر قرار می دهد.این فرایند یک مدار اتصال کوتاه متحرک را باعث می شود.مدار اتصال کوتاه دارای اثر فشرده سازی میدان مغناطیسی و کاهش دهنده اندوکتانس استاتور(سیم پیچ)است.با حرکت مدار اتصال کوتاه،پالس مغناطیسی به وجود می آید که در همه مدارها و هادی های الکتریکی تحت شعاع،جریانی معادل ده ها میلیون امپر ایجاد می نماید که در نتیجه تمام سامانه های قرار گرفته در شعاع موثر را تخریب می کند.مزیت این نوع بمب هزینه تولید کم و سادگی فرایند ساخت می باشد و عیب عمده آن در این است که محدوده وسیعی را پوشش نداده و خروجی محدود به باندهای فرکانسی زیر 1MHz است. علاوه بر این،انفجار آن مشابه مهمات معمولی اثرات ترکشزایی و تلفات انسانی به همراه دارد.

2-مولد مغناطیسی هیدرودینامیکی انفجاری

طراحی مولد مغناطیسی هیدرودینامیکی انفجاری در مقایسه با فناوری FCGجدیدتر بوده و هنوز مراحل تکامل نهایی خود را میگذراند. مشکلات فنی همچون اندازه و وزن سامانه های مولد مغناطیسی MHDباعث شده که این فناوری نقش کمتری در طراحی بمب های الکترومغناطیسی(حداقل در آینده نزدیک)ایفا کند.اصول بنیادی طراحی MHD بر مبنای حرکت یک رسانا از میان یک میدان مغناطیسی است که جریان الکتریکی عمود بر جهت میدان و حرکت رسانا تولید خواهد کرد.در MHD انفجاری،رسانا پلاسمایی از گازهای انفجاری یونیزه شده می باشد که از میان میدان مغناطیسی حرکت میکند.جریان به وسیله الکترودهایی که در تماس با جت پلاسما هستند،جمع آوری می شود.خواص الکتریکی پلاسما با بهینه کردن ساختار مواد منفجره و با استفاده از مواد افزودنی مناسب که در طی سوختن یونیزه می شوند،بهینه می شود.

3-منبع پر توان مایکروویو،نوسان کننده ی کاتدی ویرکیتور

فناوری FCG به منظور تولید پالس های بزرگ توان الکتریکی عملکرد موثری دارد،اما خروجی بمب های مبتنی بر این نوع فناوری به بایند فرکانسی زیر 1MHz محدود می شودکه قابلیت تخریب پالس الکترومغناطیس در این طیف مغناطیسی(حتی در توان بالا)روی برخی اهداف کم بوده و تمرکز انرژی در چنین وسیله ای مشکل است.سامانه ی HPM یا منبع پر توان مایکروویو که امکان تمرکز  توان خروجی را داشته و کوپل انرژی آن طیف وسیعی از اهداف را در بر میگیرد،هر دو مشکل مذکور را بر طرف می نماید.انواع مختلفی از سیستم هایHPM همچون کلیسترون(لامپ الکترونی مورد استفاده در دستگاه های مایکروویو)،مگنترون،لامپ سه قطبی انعکاسی و منبع گاف جرقه وجود دارند اما مهم ترین آنها،ویرکیتور است که به علت سادگی،ارزانی،قابلیت تولید پالس بسیار قدرتمند،مقاوم بودن و توانایی عملکرد در باند های نسبتا وسیعی از فرکانس های مایکروویو،بسیار مورد توجه قرار گرفته است.اصول عملکرد ویرکیتور بسیار پیچیده تر از سامانه مولد شار می باشد.نحوه عملکرد ویرکیتور،شتاب دادن پرتو الکترونی شدید از میان یک صفحه توری یا صفحه نازک آندی است.عبور الکترونها،فضایی حبابی شکل از ابر الکترونی پشت آند تشکیل می دهد که با عنوان کاتد مجازی شناخته می شود.این کاتد ناپایدار بوده و در شرایط مناسب،در صورتی که در یک حفره مایکروویو قرار بگیرد،در باند فرکانسی مایکروویو نوسان خواهد کرد.حال اگر شکل گیری حباب بار الکتریکی در جایی صورت بگیرد که دچار تشدید و رزنانس شود،توان الکتریکی بسیار شدیدی به دست خواهد آمد.در واقع با استفاده از فنون متداول در مهندسی مایکروویو،می توان از حفره رزنانس به منظور به دست آوردن توان مایکروویو بهره برد.از آنجاییکه فرکانس نوسان وابسته به پارامترهای جریان الکترونی می باشد،امکان تنظیم فرکانس ویرکیتور نیز وجود دارد.مقادیر توان بدست آمده در آزمایش های ویرکیتور از 170کیلووات تا 40گیگا وات در باند های فرکانسی دسیمتر و سانتیمتر تغییر میکند.دو طراحی متداول برای ویرکیتور موسوم به ویرکیتور محوری و ویرکیتور متقاطع می باشد که نوع محوری از بعد طراحی ساده تر بوده و معمولا توان خروجی بهتری تولید می کند.این سامانه معمولا به صورت یک پیکره بندی هادی موج سیلندری ساخته می شود که به یک آنتن مخروطی شکل وصل شده و توان خروجی مورد نیاز از این ساختار مخروطی که نقش آنتن را ایفا میکند بدست می آید.مشکلات فنی در طراحی ویرکیتور ویژه برای مهمات،مواردی همچون مدت دوام پالس خروجی،بازده واگردانی(conversion efficiency )در حد یک درصد،پایداری و نوسان و پهنای باند میباشد.مزیت این سامانه در قابلیت خروجی در محدوده 2-20GHz  است که کارایی موثری علیه انواع اهداف  را دارد.مقابله با این نوع بمب بسیار مشکل بوده و دارای شعاع تخریب وسیعی می باشد.

        

دفاع در مقابل بمب های الکترومغناطیس

مهمات الکترومغناطیسی را می توان بویسه بمب های هدایت شونده و غیر قابل هدایت،موشک های کروز،گلوله های توپخانه و موشک های بالستیک پرتاب نمودو لذا شاید نخستین دفاع علیه بمب های الکترومغناطیسی ممانعت از پرتاب بمب یا موشک از طریق انهدام هواپیمای حامل بمب یا موشک یا انهدام سکوی پرتاب بمب یا موشک یاشد.این شیوه دفاعی همیشه عملی نبوده و لذا سامانه های که احتمالا در معرض تاثیرات الکترومغناطیس قرار میگیرند لازم است به طور الکترومغناطیسی مقاوم شوند.استفاده از پوششی که مانع از عبور میدان مغناطیسی می شود از مهم ترین تدابیر است.این شکل دفاع می تواند با پوشاندن کامل وسایل در پوشش هادی الکتریکی موسوم به پوشش فاراده انجام شود.وقتی پالس الکترومغناطیس به این پوشش برخورد کند،انرژی آن به وسیله مواد هادی پوشش جذب شده و لذا سامانه های درون پوشش کاملا مصون می مانند.این اثر مشابه زمانی می باشد که یک هواپیما به رعد و برق برخورد می کند،در این شرایط پوسته بیرونی هواپیما انرژی را در بیرون بدنه جریان داده و تخلیه می کند،به گونه ای که هیچ سامانه ای درون هواپیما آسیب نمی بیند.برای محافظت صحیح یک سامانه،باید اطمینان نمود که تمام ورودی های آن سامانه دارای پوشش بوده و بدون پوشش فاراده رها نشده باشند.هیمن موضوع نیز به عنوان ضعف عمده این روش تلقی می شود،زیرا غالبا سامانه های تحت پوشش به هر دلیل نیازمند ارتباط با محیط خارج از پوشش می باشند.کابلهای انتقال نیرو،سیم های ارتباطی و اطلاعاتی و حتی آنتن های فرستنده و گیرنده از کانالهای ارتباطی سامانه با محیط  بیرون از پوشش می باشند.در مجموع هر سیمی که به پوشش وارد می شود یک کانال بالقوه برای انتقال موج قدرتمند انرژی و پالس الکترومغناطیس به درون پوشش فاراده و تخریب وسایل بوده و در عمل پوشش فاراده را بی تاثیر می سازد.حتی با فرض برآورده کردن این الزامات،مقاومت سامانه درون پوشش به شدت پالس الکترومغناطیسی بمب و مقاومت پوشش فاراده روی سامانه وابسته است.لذا با توجه به سطح اهمیت سامانه تحت پوشش،طراحی دقیق پوشش و در نظر گرفتن تمام جوانب هایز اهمیت است.از طرف دیگر فناوری گرمایونی(تجهیزات لوله های خلا)در مقایسه با فناوری حالت جامد یا همان ترانزیستوری در مقابل سلاح های الکترومغناطیسی مقاومت بیشتری از خود نشان می دهند.بنابراین سلاح های مورد نیاز برای تخریب رایانه ها و سامانه های با فناوری حالت جامد،کمترین تخریب یا عملا هیچ گونه تخریبی در سامانه های با فناوری گرمایونی ایجاد میکند.بنابر این سلاح های الکترومغناطیسی تخریب موثری بر چنین اهدافی ایجاد نمیکنند.

نتیجه گیری

بمب های الکترومغناطیسی را شاید بتوان سلاح حای کشتار الکتریکی نامید که طیف وسیعی از اهداف الکتریکی و الکترونیکی را در بر میگیرند.قابلیت تخریبی آنها نتایج جبران ناپذیری روی سامانه های اطلاعاتی و تاسیسات ارتباطی حریف بر جای می گذارد،لذا این نوع مهمات نقش قاطعی در فرایند جنگ اطلاعات ایفا می کنند.بهره مندی از دانش بمب های الکترومغناطیسی بویژه نوع غیر هسته ای مبتنی بر فن آوریFCG که دست یافتنی تر نیز می باشد،علاوه بر ایجاد آشنایی عملی با این سامانه و تاثیرات آن،امکان به کار گیری و راهکارهای مقابله با اثرات آنرا نیز فراهم می نماید،راهکارهایی که هرچه زودتر باید اندیشیده شوند.از کار افتادن سامانه های راداری و موشکی،تاسیسات ارتباطی و هوانوردی،عملا مختل کننده هرگونه واکنش دفاعی مناسب در مقابل حریف می باشد.نیروهای نظامی پیشرفته تر به علت وجود تجهیزات الکتریکی و الکترونیکی بیشتر،در مقابل بمب های الکترومغناطیس آسیب پذیر تر هستند.قطعا در هر گونه درگیری احتمالی با یک نیروی نظامی متکی به تجهیزات مدرن و پیشرفته الکترونیک،استفاده از یک بمب الکترومغناطیس ناثیرات مرگبارتری برای آنها به همراه خواهد داشت که به عنوان یک نقطه قوت برای حریف ضعیف تر از بعد نظامی می تواند در نظر گرفته شود.از طرف دیگر با توجه به در دسترس قرار گرفتن فناوریهای پیشرفته غیر نظامی که امکان استفاده نظامی را فراهم می کند،احتمال ساخت بمب های الکترومغناطیسی در کاربردهای تروریستی افزایش می یابد.از آنجا که این نوع بمب تلفات انسانی به همراه ندارد افکار عمومی را تحریک نکرده و کشورهای هدف در شرایط دشوای قرار میگیرند.لذا حرکت سریع به منظور کسب این فناوری حیاتی مینماید.

صفحات جانبی

نظرسنجی

    لطفاً نظرات خود را درمورد وبلاگ با اینجانب در میان بگذارید.(iman.sariri@yahoo.com)نتایج تاکنون15000مفید و 125غیرمفید. با سپاس


  • آخرین پستها

+++++

آمار وبلاگ

  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :